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Comité Editorial AVANZA

Dr. Gustavo Tapia Sánchez
Editor uacj
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Instituto de Ingenieŕıa y Tecnoloǵıa
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Limit set of cyclic subgroups of PSL(3,C) ∗

Adriana González Urquiza †

Abstract

Let P2
C be the complex projective space. It is known that each biholomorphism

f : P2
C → P2

C is either loxodromic, parabolic or elliptic [8]. Let PSL(3,C) be the
group of all biholomorphisms of P2

C. We use quasi-projective transformations to
describe the limit set, as defined by Kulkarni, of the cyclic subgroups of PSL(3,C).

Let PU(2, 1) be the group of all isometries of the two dimensional hyperbolic
space H2

C. We describe the limit set of subgroups of PU(2, 1) acting on the complex
projective space. In particular, we show that the Kulkarni limit set is the union
of all tangent lines to the hyperbolic plane H2

C, in points of the Chen-Greenberg
limit set.

The results we present in this note, continues the study iniciated by Juan
Pablo Navarrete in [7] and [8].

Keywords: Limit set, Kleinian groups, classification of isometries.

1 Introduction

The group PSL(2,C) is the group of isometries of the complex one-dimesional
hyperbolic space H1

C, using the model of the Poincaré disk. For the elements in
PSL(2,C) there is a classification according to their dynamics. The classifica-
tion is given algebraically by the trace of the lifting in SL(2,C) or by the fixed
points that the transformation has. It is, therefore, natural to wonder about the
classification of the isometries of complex hyperbolic spaces of higher dimensions.

In this way, William Goldman [4] made the classification of isometries of H2
C,

that is, the elements of the group PU(2, 1). Juan Pablo Navarrete [8] extended
the classification to the transformations of PSL(3,C), which is the group whose
elements are all the biholomorphisms of the complex projective plane. Also
studied in his paper, are the limit sets of the cyclic subgroups generated by
one element in PSL(3,C). The author uses the Bergman metric in the space to
prove that there are sequences that converge to the elements in the limit set.

∗2010, Classifications numbers AMS: 30F40.
†Im Unam, Unidad Cuernavaca, Av. Universidad s/n. Col. Lomas de Chamilpa, C.P.

62210, Cuernavaca, Morelos, México. Email address: adriana.gurquiza@im.unam.mx.

http://elibros.uacj.mx/omp/index.php/publicaciones/catalog/series/avanza
mailto:adriana.gurquiza@im.unam.mx
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Navarrete in [7] establishes the relationship between the Kulkarni limit set and
the Chen-Greenberg limit set of a subgroup of PU(2, 1).

When the complex Kleinian groups began to be studied, nothing was known
about the limit sets, so Navarrete’s discovery was enlightening, although the
approach to finding the limit sets of groups becomes inefficient when calculating
the limit set of subgroups of automorphisms of higher dimension spaces.

In this paper, we use quasi-projective transformations as another way of find-
ing the limit set of subgroups of PSL(3,C); additionally, these transformations
are useful for establishing a relationship between the Kulkarni limit set and the
Chen-Greenberg limit set of a subgroup of PU(2, 1). This tool provides a sim-
pler method for calculating the limit set of subgroups of automorphisms of higher
dimension spaces.

2 Preliminaries

Recall that SL(3,C) is the group of matrices 3×3 with coefficients in C and deter-
minant one. Due to the fact that for A ∈ SL(3,C), det(λA) = λ3 det(A), we have
three different matrices representing the same biholomorphism. Let {1, ω, ω2} be
the cubic roots of unity, it is defined PSL(3,C) as SL(3,C)/{1, ω, ω2}, and the
elements in PSL(3,C) are the biholomorphisms of the complex projective plane
P2
C.

2.1 Kulkarni’s Limit Set

Recall that for x ∈ X, the orbit of x is o(x,G) = {y = g(x)|g ∈ G}, and for a
compact subset A ⊂ X, the G−orbit of A is {g(A)|g ∈ G}.

Definition 2.1. Let X be a locally compact Hausdorff space with a countable
base for its topology. Let G be a group acting on X and let Ω ⊂ X be a G-
invariant subset. The action on Ω is properly discontinuous if for every pair of
compact subsets C and D of Ω, the cardinality of the set {g ∈ G|g(C)∩D 6= ∅}
is finite.

In 1978, Ravi Kulkarni [6] defined a limit set. Let G be a subgroup of
PSL(3,C), the limit set in the sense of Kulkarni as the union of three subsets:

Λ(G) = L0(G) ∪ L1(G) ∪ L2(G), (1)

where each subset is given by:

L0(G) the closure of points in P2
C with infinite isotropy group,



Limit set of cyclic subgroups of PSL(3,C) 7

L1(G) the closure of accumulation points of the orbits of points in P2
C \ L0(G),

L2(G) the closure of acummulation points of G−orbits of compact subsets con-
tained
in P2

C − (L0(G) ∪ L1(G)).

The complement of this union is the discontinuity region, and it is denoted
by Ω(G). We work with this definition throughout this paper.

2.2 Quasi-Projective Transformations

In this work, the quasi-projective transformations will be very important to
describe the limit set of subgroups of automorphisms of P2

C. We introduce them.
Let M : C3 → C3 be a nonzero linear transformation, and C∗ = C − {0}.

Observe that M is not necessarily invertible. Consider the kernel of the trans-
formation ker(M) ⊂ C3. We denote by [ ] : C3−{0} → P2

C the canonical projec-
tion. Let [ker(M)] ⊂ P2

C be the projectivization of ker(M). Precisely, [ker(M)] =

ker(M)/C∗. M induces a well-defined transformation M̃ : P2
C − [ker(M)]→ P2

C,
given by

M̃([v]) = [M(v)].

Indeed, it is well defined because M(v) 6= 0, and it is a projective transformation

on its domain: for every λ ∈ C∗, M̃ [λv] = [λM(v)], coinciding with [M(v)] in
P2
C.

We call M̃ a quasi-projective transformation, and we denote the set of these
transformations of P2

C as QP (3,C); this space is the closure of PSL(3,C). It is
known that the pointwise convergence is equivalent to the convergence as a space
of transformations. The following proposition is shown in [2].

Proposition 2.2. Let (gm)m∈N ⊂ PSL(3,C) be a sequence of distinct elements;
then there exists a subsequence, still denoted (gm)m∈N and a transformation g ∈
QP (3,C), such that gm → g when m→∞ in compact subsets of P2

C − [ker(g)].

We will use this transformations after noting that there is at least a lifting
for each transformation in PSL(3,C); we can, in fact, multiply gn by a scalar
α ∈ C∗, and, after projecting, we get the same transformation. If multiplied by
an adequate scalar, the sequence [αng

n] converges to a quasi-projective transfor-
mation.

2.3 Quasi-minimality Lemma

This lemma is relevant when we calculate the limit set of cyclic groups. It is
introduced in [8].
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Lemma 2.3. Let G be a subgroup of PSL(3,C). If C ⊂ P2
C is a closed subset,

such that, for every compact subset K ⊂ P2
C \ C, the accumulation points of the

family {g(K)}g∈G are contained in L0(G) ∪ L1(G), then L2(G) ⊆ C.

Proof. Suppose there is a point X ∈ L2 − C. By the definition of L2, X is
in the closure of the accumulation points of the orbit of some compact subset in
P2
C − L0 ∪ L1.

Let (km) be a sequence in P2
C − L0 ∪ L1, such that km converges to k ∈

P2
C − L0 ∪ L1. And suppose that there is a subsequence (gm) ⊂ G, such that
gm(xm)→ X ∈ P2

C−C; as the hypotheses of the lemma are valid for compact sets
in P2

C −C. Then there is N ∈ N, such that for every m > N , gm(km) ∈ P2
C −C.

Therefore, {gm(xm)} ∪ {X} is a compact set in P2
C − C.

According to the hypothesis, the accumulation points of compact subsets are
contained in L0 ∪ L1. If we consider g−1

m (gm(km)) = km −→ k, we attain a
contradiction because we started the proof assuming that k is not an element of
L0 ∪ L1.

2.4 Notation

Let e1, e2 and e3 be the projectivization of the canonical basis of C3. We denote
by Diag(a, b, c) the diagonal matrix, whose values in the diagonal are a, b and c.

Recall that the set of accumulation points of any set A is denoted A′.

3 Limit sets of cyclic subgroups

We proceed with the calculation of the limit sets of different transformations.

3.1 Loxodromic Transformations

We define the loxodromic elements in PSL(3,C) as those that have a lift in
SL(3,C), whose Jordan canonical form is one of the following matrices:

(1.a) g =

α1 0 0
0 α2 0
0 0 α3

 , (1.b) g =

α1 0 0
0 α1 0
0 0 α2

 , (1.c) g =

1 1 0
0 1 0
0 0 λ

 ,
where |αi| < |α3|, i < 3; where |α1| 6= |α2|; where |λ| 6= 1.

In order to describe the limit set of this type of transformation,
we first find the points with infinite isotropy group. Let X = [x : y : z] be
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any point in P2
C; the points we are looking for are those which satisfy the next

equation:

gn(X) = [αn1x : αn2y : αn3z] = [x : y : z]. (2)

The solutions of this equation are e1, e2 and e3. Thus, L0 = {e1, e2, e3}.
To find the set L1(G), observe that α−n3 gn converges to the matrixDiag(0, 0, 1)

as n goes to infinity; therefore, e3 is an attracting point for X 6= e1, e2, e3.
But if |α1| < |α2|, then [g−n] = [αn1g

−n] converges to the transformation
given by the matrix Diag(1, 0, 0) as n goes to infinity; then e1 is a repelling
accumulation point.

We multiply the n-th power of the transformation by α−n2 . Applying these
iterates to the points in the line {z = 0}, they converge to [e2] as n goes to
infinity. And if we apply the n−power of g−1 to the points in the line {[X = 0]},
the sequence [g−n] = [αn2g

−n]→ e2. So, L1 = {e1, e2, e3}.
In order to know L2, we have to prove two contentions. And using lemma

2.3, the proof would be complete:

Claim 3.1. L2 ⊆
←−−→
[e1e2] ∪

←−−→
[e2e3]

Proof. Take the union of these lines as the closed subset of lemma 2.3. We
already know that all the points outside these lines converge to the future to [e3]
and to the past to [e1], and both points are part of L0(g) ∪ L1(g).

On the other hand, take a line `, such that e1, e2, e3 /∈ `, and we can prove
the next claim.

Claim 3.2. If the group G = 〈g〉 is generated by an element as in (1.a), then

either the line
←−−−→
[e2][e3] or

←−−−→
[e1][e2] lies in the limit set Λ(G).

Proof. If there exists a point p ∈
←−−−→
[e1][e2], such that p /∈ Ω′, then there is a

neighborhood Br(p), such that Br(p) /∈ Ω′. Take a point q ∈
←−−−→
[e2][e3] \ {e2, e3}.

And build the line ←→pq = `. Apply gn to the line `; the image of this line is again
a line in P2

C. The line ` and each of its images defines a point in (P2
C)∗, and so,

we have a sequence of points in (P2
C)∗.

The line←→pq ∈ P2
C defines a point h0 ∈ (P2

C)∗. Moreover, gn(←→pq ) =
←−−−−−−→
gn(p)gn(q).

And as gn(p)→ e2 and gn(q)→ e3, then
←−→
gn(`)→

←−−−→
[e2][e3].

Up to here, for all y ∈
←−−−→
[e2][e3] there is a sequence of points (xn) ⊂ ←→pq , such

that gn(xn) converges to y. We claim that the sequence of points (xn) converges
to q. This happens because if it would converge to another point x 6= q, that

point would satisfy: x /∈
←−−−→
[e2][e3], due to the uniqueness of q in the intersection

of this line with `.
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Then, the dynamic would be:

gn(xn)→ gn(x)→ [e3]. (3)

Which is a contradiction, because that sequence converges to y.

The compact subset (xn)∪{x} converges to y ∈
←−−−→
[e2][e3]; therefore, the entire

line
←−−−→
[e2][e3] is in Ω′.

Through an analogous reasoning it is shown that each point in the line
←−−−→
[e1][e2]

is also an accumulation point and is in the limit set of the group G = 〈g〉.

Finally, the result which is proven with the analysis above and the claims 3.1
and 3.2 is the following:

Proposition 3.3. The Kulkarni limit set for G = 〈g〉 is Λ(G) =
←−−−→
[e1][e2]∪

←−−−→
[e2][e3].

The transformations of type (1.a) are called strongly loxodromic whenever
|α1| < |α2|. If this last condition doesn’t hold, it is only called loxodromic. We
can add the conditions: |α1| = |α2| 6= |α3|; so α1/α2 = e2πia; if a ∈ Q, this map
is called a rational screw, but if a ∈ R − Q, the transformation is an irrational
screw.

We check the case a ∈ Q. Again, the points e1, e2 and e3 are fixed points;
even more, the points on the line ←−→e1e2 have infinite isotropy group, due to the
equality [g] = [α−1

2 g] = Diag(e2πia, 1, α−1
2 α3) as a is rational, for infinitely many

n ∈ N, e2πina = 1. Then L0 =←−→e1e2 ∪ {e3}.
If |α3| < |α2|, we multiply [α−n2 gn], this transformation converges to

Diag(1, 1, 0) as n goes to infinity; therefore, the points in P2
C different from

e1, e2, e3 converge to the line ←−→e1e2. Calculating the limit as n → ∞, αn3g
n(X)

goes to [e3]. And we have L1 = L0.
By lemma 2.3, L2(g) ⊂ ←−→e1e2∪←−→e2e3. To prove the converse, we use a reasoning

analogous to the one in claim 3.2.
When a ∈ R−Q, the only change is that L0 = {e1, e2, e3}.

Type (1.b)

A transformation as in (1.b) is called complex homothety. The fixed points of this
transformation are the ones in the line {z = 0} and e3; and they are also the only
points with infinite isotropy group, so L0 = ←−→e1e2 ∪ [e3]. Without loss of gener-
ality, suppose |α1| < |α2|. The sequence α−n2 gn converges to the transformation
Diag(0, 0, 1) as n goes to infinity; therefore, [e3] is an attracting point. Also
αn1g

−n converges to Diag(1, 1, 0) if n goes to infinity; that’s why we conclude
that ←−→e1e2 is a line of repelling points.
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If a compact subset is outside ←−→e1e2 ∪ {e3}, the images of this compact subset
under the action of the group converge to [e3] to the future and to ←−→e1e2 to the
past. Therefore, L0 = L1 = L2 = Λ =←−→e1e2 ∪ {e3}.

Type (1.c)

For these transformations, the fixed points are {e1, e3} and only they belong
to the set L0. Furthermore, e3 is an accumulation point of orbits of points
outside the line ←−→e1e2; e1 is an accumulation point of orbits of g−n for
points different from e3. The orbit of the points of the line ←−→e1e2, accumulate
in e1. Then L1 = {e1, e3}. To calculate L2, we make reference again to the claim
3.2; and it is formed by the lines ←−→e1e2 ∪←−→e1e3.

3.2 Parabolic Transformations

In this section, we make the analysis of the limit set of the cyclic group generated
by a parabolic transformation.

If the element is parabolic, then it has a lifting, whose Jordan canonical form
is given by one of the following matrices:

2.a) g =

1 1 0
0 1 0
0 0 1

 , 2.b) g =

1 1 0
0 1 1
0 0 1

 , 2.c) g =

1 1 0
0 1 0
0 0 λ

 ,
where λ = e2πia 6= 1.

Type (2.a)

The points with infinite isotropy are the points in the line
←−−→
[e1e3], because the

transformation on this line is the identity, obtaining L0.

To find L1, we look at the iterations of (2.a) and get as limit transformation:

gn =

1 n 0
0 1 0
0 0 1

 −→ h = 6

0 1 0
0 0 0
0 0 0

 . (4)

That is, the sequence of transformations converges to the constant transforma-
tion [e1] if we iterate forward (and also if we iterate backward) for points outside
←−→e1e3. Observe that in this particular case ←−→e1e3 is precisely the subspace that
must be ommited when calculating L1(G), since the points in the line are fixed.
So L1(G) = {e1}.
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The set L2 is composed by the accumulation points of the compact sets in

P2
C −
←−−→
[e1e3]. If U is an open set that contains e1 and K is a compact subset

outside ←−→e1e3, by proposition 2.2 there exists N ∈ N such that for every n > N ,
then gn(K) ⊂ U .

Then L2(G) = {e1}, and the Kulkarni limit set Λ(G) of the cyclic group G

is
←−−→
[e1e3].

Type (2.b)

Applying the parabolic transformation in (2.b) to a point [x : y : z] in P2
C, we

have that the only point with infinite isotropy group is e1; it is, in fact, a fixed

point. Moreover,
←−−→
[e1e2] is invariant under g.

In order to find the closure of the accumulation points of orbits of elements
in P2

C−{e1}, the process is the same as in the previous example, that is, iterating
the transformation and dividing by the entry of greater norm in gn, and then as
n goes to infinity, the limit transformation is:

h =

0 0 1
0 0 0
0 0 h

 .
If we apply h to a point [x : y : z] outside ←−→e1e2, its image is the point

[e1], and follows that it is an attracting point. Doing the same to the inverse
transformation, the image of the limit transformation is [e1]; then it is a repelling
point. However, in this case, L0(G) does not coincide with the kernel of h. Yet,
we have to verify what happens to points in ←−→e1e2.

This line is invariant under g and the transformation restricted to ←−→e1e2 has
a parabolic behavior, that is, any point on the line converges to the fixed point
{e1}. Therefore, L1(G) = {e1}.

To find the invariant lines is enough to compare the vectors of the form

(x+ y, y+ z, z) with (αx, αy, αz) for α ∈ C∗. There is an invariant line:
←−−−→
[e1][e2].

Here, again, lemma 2.3 is used to show that L2(G) ⊆
←−−−→
[e1][e2]. And another

lemma is required; this lemma is found in [8].

Lemma 3.4. Let K be a compact subset of P2
C \
←−−→
[e1e2], and g as in (2.b), then

[e1] is the only accumulation point of the family {gn(K)}n∈Z.

Claim 3.5. The line
←−−−→
[e1][e2] is part of the limit set of the group G = 〈g〉.

Proof. Let L be the line in (P2
C)∗, the dual space of the complex projective space,

and (P2
C)∗ parametrizes the pencil through e1 ∈ P2

C. The line ←−→e1e2
∗ is a point in

(P2
C)∗.
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In the dual space, the transformation g∗ has the same normal form as g.

That is, g∗ is conjugated to g. Then, there is an invariant line in (P2
C)∗,

←−→
f1f2,

and a unique fixed point: f1.

As ←−→e1e2 is invariant, ←−→e1e2
∗ is a fixed point and therefore coincides with f1.

Recall that if L =
←−→
f1f2, all points in the line L represent a line passing through

e1 in P2
C.

Let ` be a line in P2
C, such that e1 and e2 are not in `; then `∗ represents a

point in (P2
C)∗ \ L. In this case, (g∗n)∗(`∗) = gn(`) −→ f∗1 =←−→e1e2.

Given y ∈ ←−→e1e2, there is a sequence (xn) ⊂ ` that converges to a point x ∈ `,
such that gn(xn) → y. Note that x is in ←−→e1e2; on the contrary, the compact set
(xn)∪x would be outside the line and would accumulate on e1, according to the
previous analysis. Therefore, L2(G) =←−→e1e2.

Type (2.c)

The fixed points of the transformations are e1 and e3; however, there are more
points with infinite isotropy group. For (x, y, z) ∈ P2

C, we have gn(x, y, z) =

(x+ ny, y, λnz). In case a is rational, the entire line ` =
←−−→
[e1e3] is in L0(g).

The same transformation that was shown in (4) is obtained as the limit, if we
consider the sequence of transformations generated by powers of g, divided each

one by the entry of greater norm. So, if a ∈ Q, and (x, y, z) /∈
←−−→
[e1e3], gn(x, y, z)

tends to e1 iterating both, to the future and to the past. And L1(G) = {e1}.
When a ∈ R \ Q, the only points in L0 are {e1, e3}. And for a point

(x, 0, z) in the line
←−−→
[e1e3] is easy to build a sequence in P2

C converging to (x, 0, z).
It is enough to find a subsequence {nk}, such that λnk → 1 when n → ∞; as
a is irrational, the subsequence exists. Then, gn(X) = (x, 0, λnz) converges to
(x, 0, z). Therefore, L1 is the entire line.

Finally, for the compact subsets in P2
C \ L0 ∪ L1; in both cases, the union of

these subsets is the line `. And compact sets outside this line converge to e1 as
seen before.

3.3 Elliptic Transformations

An elliptic element in PSL(3,C) are those whose lift in SL(3,C) has the following
Jordan canonical form:

g =

e2πiα 0 0
0 e2πiβ 0
0 0 1

 , β ∈ R. (5)
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Consider the elliptic element in equation (5). In the case that α and β are
rational, the transformation has finite order, and therefore it has no fixed points
nor accumulation points. Then, the limit set is empty.

If at least β is an irrational number, L0 will be the fixed points of the trans-
formation. For each (x, y, z) we can find a subsequence {xn}, such that gn(xn)
converges to (x, y, z). For example, assuming that α = p/q, we know that there
are infinite natural numbers n, such that e2πinα = 1. As β/q is still an irrational
number, it is known that there is a subsequence nk that makes the convergence
of e2πiβnk to 1. Therefore, if

xn = e2πinα, yn = e2πinβ, zn = 1, (6)

results that X is an accumulation point and (x, y, z) ∈ L1. So the second set is
L1 = P2

C, and L2 = ∅.

4 Relation between L(G) and Λ(G) with G subgroup
of PU(2, 1)

Recall that the sequence (gm)m∈N ⊂ PSL(3,C) converges to g ∈ QP (3,C) in the
sense of quasi-projective transformations if gm −→ g, when m → ∞ uniformly
on compact subsets of P2

C \ ker(g).

We study the lemma 4.2 of [1].

Lemma 4.1. Let G be a subgroup of PU(2, 1) a discrete subgroup, (gm)m∈N ⊂ G
a sequence of distinct elements, and g ∈ QP (3,C)\PSL(3,C), such that (gm)m∈N
converges to g in the sense of quasi-projective transformations. Then:

(i) The image ı̇(g) is a point in ∂H2
C.

(ii) ker(g)⊥ is a point in ∂H2
C.

Proof. For the proof of (i), we use proposition 3.2 in [8], where it is asserted
that given a sequence of distinct elements of a discrete subgroup G ⊂ PU(2, 1),
there is a subsequence and distinct elements x, y ∈ L(G), such that gm(z) → x

uniformly in compact sets of H2
C \ {y}.

As H2
C is an open subset of P2

C, g is a holomorphic transformation, then
g(H2

C) is an open subset in the image of g. On the other hand, g(H2
C) = p is a

closed subset of ı̇(g). The only set which is closed and open at the same time is
either the total set or the empty set, follows that ı̇(g) = {p}.

Having said this, ı̇(g) is a point in the boundary of the hyperbolic space.
To prove the second part of the lemma, recall that the sum of the dimension of
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the kernel of a transformation on a vector space plus the dimension of its image
equals the sum of the vector space. If we consider that g : C3 −→ C3 is a linear
transformation and that dimC(ı̇(g)) = 1, we have dimC(ker(g)) = 2, and this
implies that [ker(g)] is a projective line.

Then, the claims are H2
C ∩ ker(g) = ∅ and ∂H2

C ∩ ker(g) 6= ∅. Both claims
are proven by contradiction. In the first case, let x ∈ H2

C ∩ ker(g); as the
transformation g is not identically zero, we can take x /∈ ı̇(g). By proposition
3.3 in [1], for (gm), g, x and H2

C, follows that there is a line contained in H2
C,

which is a contradiction. Therefore, H2
C ∩ ker(g) = ∅.

For the second claim, assume that ∂H2
C ∩ ker(g) = ∅. By (i) of this same

lemma, it exists p ∈ ∂H2
C, such that gm converges uniformly to p, which is a

constant transformation. Let x be an element in H2
C and U a neighborhood of p

that satisfies U ∩H2
C ⊂ H2

C − {x}. Then, there is n0 ∈ N, such that if m > n0,
gm(H2

C) ⊂ U ∩H2
C ⊂ H2

C − {x}. But this is a contradiction, given that gm is a
homeomorphism of H2

C.

λ-Lemma

The next result is known as the λ-Lemma. We’ll use it in further arguments.

Lemma 4.2. Let g ∈ PU(2, 1) be a loxodromic element with fixed points a, r ∈
P2
C; and let Ω ⊂ P2

C be an open subset. Assume that 〈g〉 acts properly discontin-
uously in Ω. Then, a⊥ ∈ P2

C \ Ω or r⊥ ∈ P2
C \ Ω.

Theorem 4.3. The Kulkarni limit set coincide with the perpendicular lines tan-
gent to ∂H2

C in points of the Chen-Greenberg limit set.

Proof. In [5], Kamiya shows that a non-elementary discrete subgroup G, always
has a loxodromic element g. By lemma 4.2, we have that a⊥ belongs to the
Kulkarni limit set. As we saw in section 3.1, also r⊥ belongs to Λ(G). Besides,
Λ(G) is an invariant set and the action of G is transitive.

The fixed points of loxodromic elements are dense in the Chen-Greenberg
limit set [3], then all the tangent lines to the ball in points of L(G) are, in fact,
in Λ(G). For transformations of type (1.c), it happens that ∪p∈L(G)`p ⊂ Λ(G).

To show the other contention, lemma 2.3 is applied; then, if C = ∪p∈L(G)`p,
and we consider a compact set outside C, by lemma 4.1, this compact set acum-
mulates on some point of ∂H2

C. That is, Λ(G) ⊂ ∪p∈L(G)`p, and therefore

Λ(G) = ∪p∈L(G)`p. (7)
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in Mathematics 303. Basel: Birkhäuser/Springer Basel AG, 2013. doi:
10.1007/978-3-0348-0481-3.

[2] A. Cano and J. Seade. “On the Equicontinuity Region of Discrete Sub-
groups of PU(1,n)”. In: J. Geom. Anal. 20.2 (Apr. 2010), pp. 291–305.
doi: 10.1007/s12220-009-9107-6.

[3] S. Chen and L. Greenberg. “Hyperbolic Spaces”. In: Contributions to anal-
ysis (a collection of papers dedicated to Lipman Bers). Elsevier, 1974,
pp. 49–87. doi: 10.1016/b978-0-12-044850-0.50013-7.

[4] W. M. Goldman. Complex hyperbolic geometry. Oxford Mathematical Mono-
graphs. Oxford Science Publications. The Clarendon Press, Oxford Univer-
sity Press, New York, 1999, pp. xx+316.

[5] S. Kamiya. “Notes on elements of U(1, n; C)”. In: Hiroshima Math. J. 21.1
(1991), pp. 23–45. doi: 10.32917/hmj/1206128922.

[6] R. S. Kulkarni. “Groups with domains of discontinuity”. In: Math. Ann.
237.3 (1978), pp. 253–272. doi: 10.1007/BF01420180.

[7] J. Navarrete. “On the Limit Set of Discrete Subgroups of PU(2,1)”. In:
Geometriae Dedicata 122 (Oct. 2006), pp. 1–13. doi: 10.1007/s10711-
006-9051-6.

[8] J.-P. Navarrete. “The trace function and complex Kleinian groups in P2
C”.

In: International Journal of Mathematics 19.7 (2008), pp. 865–890. doi:
10.1142/S0129167X08004868.

https://doi.org/10.1007/978-3-0348-0481-3
https://doi.org/10.1007/s12220-009-9107-6
https://doi.org/10.1016/b978-0-12-044850-0.50013-7
https://doi.org/10.32917/hmj/1206128922
https://doi.org/10.1007/BF01420180
https://doi.org/10.1007/s10711-006-9051-6
https://doi.org/10.1007/s10711-006-9051-6
https://doi.org/10.1142/S0129167X08004868


Workshop on Kleinian Groups and Related Topics
AVANZA, Vol. ix. (2019) 17 – 25. isbn: 978-607-9224-52-3
http://elibros.uacj.mx

Veronese Groups ∗

Alejandro Ucan-Puc †

Abstract

In the following, we will describe the equicontinuous set of a family of discrete
subgroups of PSL(3,C)(n+1,C) in aims to obtain a family of examples of complex
Kleinian groups.

Keywords: Veronese groups, complex Kleinian groups, equicontinuous set.

1 Introduction

The theory of Kleinian groups was introduced by Poincaré in the decade of 1880,
these groups are defined as monodromy groups of certain differential equation in
the plane; these groups have a big role in different areas of mathematics as Rie-
mann surfaces, Teichmüller spaces, automorphic forms, holomorphic dynamics,
conformal and hyperbolic geometry.

Another way to understand these groups are: as subgroups of conformal
transformations of the two sphere, as subgroups of PSL(2,C) acting on the pro-
jective line and as subgroups of the isometry group of the hyperbolic plane.
The three ways to understand have different properties and these ones varyes
by the geometry of the space where the groups act. These three ways of work
of the Kleinian groups are have enriched the classical Kleinian group theory,
we can mention [2]. We recall that a Kleinian group gives a partition of the
space where is acting, in two invariant sets: one is the “limit set”, that is, the
minimal closed set where occurs interesting dynamical features, for example in
some cases is a perfect set; the other is the complement of the first one and it’s
called the “domain of discontinuity”, the maximal open set where the action is
discontinuous.

A big part of the Kleinian group theory has been generalized to higher dimen-
sional setting, as subgroups of conformal transformations of the n−dimensional
sphere that have a non-empty open set where its action is discontinuous; these
groups are known as conformal Kleinian groups (see [12]).
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In [15] was introduced the notion of a complex Kleinain group as discrete
subgroups of PSL(n + 1,C) acting on the n−dimensional projective space and
that have a non-empty open subset where the action of the group is properly
discontinuous. After, in [13] and [14], was estudied a notion of limit set (and its
complement) for a special family of complex Kleinian groups in PSL(3,C), known
as complex hyperbolic groups. Later, in [4], was described the complement of the
equicontinuous set for higher dimensional complex hyperbolic groups, work that
generalice the ideas in the two dimensional setting. After all the work done for
complex Kleinian groups, there is still a lot of empty spaces to hard work on. In
this paper, we studied the equicontinuous set and its complement for an special
kind of subgroups, that we call Veronese groups, and this in the aims of look for
a different example of Kleinian groups in higher dimensional setting.

2 Preliminaries

Let CPn be the n−dimensional complex projective space, that is, the set of con-
jugacy classes of Cn+1\{0} under the natural action of C∗. The projective special
group, denoted by PSL(n + 1,C), is the set of conjugacy classes of the special
lineal group SL(n+1,C) under the natural action of C∗. Note that PSL(n+1,C)
has a natural action on CPn at the level of representatives of conjugacy classes,
i.e.,

[g][z] = [gz], [g] ∈ PSL(n+ 1,C), and [z] ∈ CPn.

The elements of PSL(n+ 1,C) are classified in terms of its linear properties.

Definition 2.1. An element γ ∈ PSL(n+ 1,C) it is said to be:

• elliptic, if and only if has a lift γ̃ ∈ SL(n + 1,C), that is, diagonalizable
and all of its proper values are unitary complex numbers.

• parabolic, if every lift γ̃ ∈ SL(n+1,C), that is, non-diagonalizable and each
of its proper values is are unitary complex numbers.

• loxodromic, if and only if has a lift γ̃ ∈ SL(n + 1,C) with at least one
non-unitary proper value. If every proper value of γ̃ are different and it’s
diagonalizable, then we will say that γ is purely strongly loxodromic.

Remark 2.2. The previous Definition generalize the trichotomy of the elements of
PSL(2,C); for more information of the dynamical features
for the elements described previously, see [7].

A complex Kleinian group is a discrete subgroup G of PSL(n+1,C), such that
there exist an open subset of CPn where the action of G is properly discontinuous
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(see [3]). In [13], [6] they studied some examples of complex Kleinian groups as
discrete subgroups of PU(n, 1), these groups has an invariant sphere in CPn, that
is, the model of the complex hyperbolic space (see [10]). Another example was
given in [5], as Schottky subgroups of PSL(n + 1,C) in CPn. Given a discrete
subgroup Γ of PSL(n+1,C), the limit set of Γ is the closure of the cluster points
of the orbits of Γ of points in CPn and we will denoted it by Λ(Γ).

Remark 2.3. Maximal and minimal properties on the discontinuity set and the
limit set are classical features for Kleinian groups. We recall that for discrete
subgroups of PSL(n + 1,C), the limit set described above doesn’t imply that
its complement is the maximal open subset of CPn where the action is properly
discontinuous, see [13] for an example that this doesn’t occurs. In [1] its proved
that for a generic family of discrete subgroups there exists a unique way to obtain
a minimal closed invariant subset.

In our, we will use the limit set defined above to construct a new closed
invariant subset for our groups; even if the new closed subset isn’t minimal,
its complement is an open subset where the action of the group is properly
discontinuous.

The following tool was introduced on [4] for the study of the equicontinuous
set of discrete subgroups of PU(n, 1).

Let T : Cn+1 → Cn+1 be a linear transformation with non-trivial kernel and
denote [kerT ] the projectivization of its kernel; the map T induce a map from
CPn \ [kerT ] to CPn, denoted by [[T ]], given by

[[T ]]([z]) = [T (z)]. (1)

We will call the map [[T ]] a pseudo-projective map and if M(n+ 1,C) denotes
the set of linear transformations from Cn+1 to Cn+1, the set M(n+1,C)\{0}/C∗
induces the set of pseudo-projective maps and we will denoted it by PsP(n+1,C).

The following proposition relates the pointwise convergence in PsP(n+ 1,C)
and uniform convergence in CPn.

Proposition 2.4. (see [4]) Let (γm)m∈N ⊂ PSL(n + 1,C) be a sequence of
distinct elements, then:

1. There is a subsequence (γmj )j∈N and γ0 ∈ PsP(n + 1,C), such that
γmj j→∞

// γ0 as points in PsP(n+ 1,C).

2. If (γmj )j∈N is the sequence given by the previous part of this lemma, then
γmj j→∞

// γ0, as functions, is uniformly on compact sets of CPn \ [ker γ0].
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Let G be a group acting on a manifold X. A point z in X is said to be
equicontinuous if there is an open neighbourhood U of z, such that G|U is a
normal family, i.e., every sequence of distinct elements has a subsequence that
converges uniformly on compact sets relative to U. The equicontinuity region of
G, denoted by Eq(G), is the set of equicontinuous points z ∈ X. The Proposi-
tion 2.4 implies that for a sequence of different elements in PSL(n + 1,C), the
equicontinuous set of the sequence is given by the complement in CPn of the
kernel of the limit pseudo-projective transformation (see [4]).

3 The Irreducible Representation and the Veronese
curve

Let Hn be the vector space of homogeneous complex polynomials in two variables
of degree n with the natural basis β = ej(z, w) = zn−jwj

n
j=0. We will denote by

P(Hn) the set of classes under the natural action of C∗ in Hn \ {0}.
The projective special linear group PSL(2,C) has a natural action on P(Hn)

as a change of variables in a polynomio of a class:

ρ : PSL(2,C)× P(Hn) → P(Hn)
([A], [p(z, w)]) 7→ [p ((z, w) ·A)]

(2)

Remark 3.1. There are morphisms that identify P(Hn) with the n−symmetric
power of CP1, to know (CP1)n/Sn, and this one with CPn. So we can think that
the ρ action is a PSL(2,C) action on CPn.

We can translate the ρ action to a matrix representation, if we look in how
a matrix A acts on the elements of the basis {ej(z, w)}, computing:

ρ(A, [em]) = (az + cw)n−m(bz + dw)m with A =

[
a b
c d

]
.

With a straigth computation, we can deduce:

ρ(A, [em(z, w)]) =
n∑
j=0

 ∆j,m∑
k=δj,m

(
n−m
k

)(
m

j − k

)
an−m−kckbm−j+kdj−k

 zn−jwj,
(3)

where δj,m = max{j −m,n} and ∆j,m = min{j, n−m}, and we can do this for
every m = 0, · · · , n. So we obtain a application between PSL(2,C) and PSL(n+
1,C), that we will still denote ρ.
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Lemma 3.2. The map ρ : PSL(2,C)→ PSL(n+ 1,C) described above, is a well
defined group morphism; even more, it is injective.

Proof. The group morphism property follows from the action ρ. The injectivity
follows from the form of ρ([A]) for a class [A].

The morphism ρ is known as the irreducible representation of PSL(2,C) into
PSL(n+1,C), see [11]. In the following, we will describe some properties related
to the morphism and the elements of PSL(·,C).

Proposition 3.3. The morphism ρ is type preserving, i.e., it sends loxodromic,
parabolic, and elliptic elements of PSL(2,C) into loxodromic, parabolic, and ellip-
tic elements of PSL(n+1,C). Even more, if Γ is a discrete subgroup of PSL(2,C),
then ρ(Γ) is a discrete subgroup of PSL(n+ 1,C).

Proof. For the part of type preserving, it will be sufficient to look at the image
of the matrices

A =

[
λ 0
0 λ−1

]
and B =

[
1 1
0 1

]
,

a straight computation involving Equation (3) implies the claim.

For the second part of the proposition, suppose that Γ < PSL(2,C) is a
discrete subgroup, but ρ(Γ) isn’t discrete. So there is a sequence (Am)m∈N in Γ,
such that ρ(Am)→ Idn+1 as m→∞, with

Am =

[
am bm
cm dm

]
.

From the expression of ρ(Am), we can imply that Am → Id2; this is a con-
tradiction because Γ is discrete. Therefore, ρ(Γ) is discrete.

There is a way to embed CP1 into a curve in CPn and it comes from the
construction of the morphism ρ. Let be,

ψ : CP1 → CPn

[z : w] 7→
[
zn : · · · :

(
n
m

)
zn−mwm : · · · : wn

] (4)

this map is known as the Veronese embedding. We will denote by Cn
the image of CP1 under ψ; the set Cn is a normal rational algebraic
curve called the Veronese curve.

The following Lemma involve geometric properties of the Veronese curve:

Lemma 3.4. Every subset of n+1 different points in Cn is linearly independent.
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Proof. Let {pj = ψ([1 : tj ])}nj=0 be with tj 6= tk if j 6= k. Let
∑n

j=0 ajpj = 0
be a linear combination; it follows from the form of the elements that the linear
system with variables aj

′s has the unique solution 0. Therefore, {pj}nj=0 is linearly
independent.

Proposition 3.5. Every subset of m > n+ 1 different points of Cn is in general
position.

Proof. The proof follows from the previous lemma.

Proposition 3.6. The group of projective automorphisms of Cn is ρ(PSL(2,C)).

Proof. A straight computation give us that ρ(A) · ψ(p) = ψ(A · p) ∈ C for every
A ∈ PSL(2,C) and p ∈ CP1. We can conclude that ρ(PSL(2,C)) leaves invariant
the curve C . Let us suppose that there is an element B ∈ PSL(n + 1,C), such
that B(C ) = C . Denote by B̃ the map from CP1 into CP1 given by B̃([z : w]) =
ψ−1Bψ([z : w]). The map B̃ is an holomorphic map, so belongs to PSL(2,C);
even more, the following diagram conmutes:

CP1 B̃ //

ψ
��

CP1

ψ
��

C
B

// C
.

We can assure that B|C = ρ(B̃)|C . Let us take n + 2 different points of
C in general position, the transformation Bρ(B̃)−1 fixes the n + 2 points; this
implies that Bρ(B̃)−1 = Idn+1 in CPn. So, the projective automorphisms of C
is ρ(PSL(2,C)).

Corollary 3.7. The Veronese embedding ψ is PSL(2,C)−equivariant. Even
more, for every Γ ⊂ PSL(2,C) group, ψ is Γ−equivariant.

Remark 3.8. The previous Corollary implies that the action of subgroups of
ρ(PSL(2,C)) on C is essentially the well-known action of subgroups of PSL(2,C)
in CP1. Even more, if z ∈ CP1 belongs to the limit set of Γ, then ψ(z) is an
accumulation point for the orbits of ρ(Γ).

Corollary 3.9. Let Γ be a discrete subgroup of PSL(2,C), and Λ(Γ) its limit
set. Then ψ(Λ(Γ)) is contained in Λ(ρ(Γ)).

Definition 3.10. A Veronese group is the image under ρ of a discrete subgroup
of PSL(2,C).
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Definition 3.11 ([11]). Let φ : CP1 → CPn be a smooth curve defined by

φ([z : w]) = [v0(z, w) : · · · : vn(z, w)] .

The osculating hyperplane of φ(CP1) at p = φ([1 : k]) is the row space of the
matrix 

v0 v1 · · · vn−1 vn

v
(1)
0 v

(1)
1 · · · v

(1)
n−1 v

(1)
n

...
...

. . .
...

...

v
(n−1)
0 v

(n−1)
1 · · · v

(n−1)
n−1 v

(n−1)
n


∣∣∣∣∣∣∣∣∣∣
[1:k].

(5)

Remark 3.12. We recall that

i. The osculating hyperplane of a curve φ(CP1) is an hyperplane in CPn that
intersects the curve in just one point.

ii. There is a mapping Πn : φ(CP1) → (CPn)∗, where (CPn)∗ is the dual
space of CPn that identifies a point with its osculating hyperplane and it’s
known as a polarity; we refer to [9] and [8] for more information.

Lemma 3.13. The osculating hyperplane of C at p = ψ([1 : t]) is given by the
equation

Lp :=
n∑
j=0

(−1)jtjzn−j = 0, (6)

where [z0 : · · · : zn] are the homogeneous coordinates of CPn.

Proof. A parametrization for the Veronese curve is given by vj([1 : t]) =
(
n
j

)
tj ;

a straight computation implies the claim.

4 The Equicontinuity Region

The equicontinuity region of a group is an interesting set that gives relevant
information of the dynamics of the group. The following theorem relates this set
and the classical limit set of a Kleinian group:

Theorem 4.1. Let Γ be a discrete subgroup of PSL(2,C), and G = ρ(Γ) the
correspondient Veronese group, then

CPn \ Eq(G) =
⋃

z∈Λ(Γ)

Tψ(z)C , (7)

where Λ(Γ) is the limit set of Γ for its action on CP1, and TzC is the osculating
hyperplane to C in z.
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Proof. We can extend by continuity the morphism ρ to a map from PsP(2,C)
into PsP(n+ 1,C), if γ = lim

m→∞
γm ∈ PsP(2,C), then ρ(γ) = lim

m→∞
ρ(γ).

Let us assume that after a conjugation [1 : 0], [0 : 1] doesn’t belong to Λ(Γ).
Let [1 : k] ∈ Λ(Γ), following the ideas of [4], there is a sequence (γn)n∈N ⊂ Γ,
such that γn → γ ∈ PsP(2,C) and ker γ = [1 : k]; even more, we can assure that

γ =

[
−bk b
−dk d

]
and by Corollary 3.9 and the previous paragraph, under the map ρ we have a
sequence in PSL(n + 1,C) that converges to an element in PsP(n + 1,C); by
the continuity, we have that this limit is ρ(γ). A straight computation gives us
that the kernel of ρ(γ) is spanned by β = {e1 − (−k)mem+1}, where {ei}m+1

i=1 is
the standard basis of Cn+1. By lemma 3.13, the hyperplane spanned by β is the
osculating hyperplane of C at ψ([1 : k]), and by proposition 2.4,
we obtain the theorem.
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Abstract

Anti de Sitter space, abbreviated AdSn, is a lorentzian model space, and an
example cosmological model. It is the analogous of hyperbolic space, Hn, and has
some applications in physics. In these notes we review the geometrical properties
of AdSn, their analogy with classical results from real hyperbolic geometry and
show that there is a relation between AdS3 and group theory.
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1 Introduction

Anti de Sitter space is one of the spacetime models, collectively known as
Robertson-Walker spaces in the physics literature [5]. In mathematical terms,
anti de Sitter space is an homogeneous semi-Riemannian manifold of constant
negative sectional curvature, and, as we shall see, it is the lorentzian analogous
of real hyperbolic space. In recent years, it has gained relevance in the physics
literature, after the AdS/CFT correspondence, developed by string theorists, has
proved to be a powerful tool in studying field theory phenomena with tools from
gravity physics of a more geometrical nature [7]. This article collects the results
from anti de Sitter spacetime that can be found in several places, and that I
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2 Some hyperbolic geometry

Let Rn,1 denote Rn+1 equipped with the quadratic form

η =

(
In 0
0 −1

)
.

Recall that hyperbolic space, Hn, is the upper half space

Hn = {x ∈ Rn : xn > 0}

endowed with the Riemannian metric:

dx2
1 + · · ·+ dx2

n

x2
n

.

There are three custom isommetric models of hyperbolic space. The other two
models are the Poincaré disc,

Dn =
{
x ∈ Rn : x2

1 + · · ·+ x2
n < 1

}
with the metric

4
dx2

1 + · · ·+ dx2
n

(1− ||x||2)2 ,

and the hyperboloid model,{
x ∈ Rn+1 : x2

1 + · · ·+ x2
n = x2

n+1 − 1, xn+1 > 0
}

with the subspace metric inherited from the quadratic form η defined above.

Note that the hyperboloid model corresponds to the set of solutions to xtηx =
−1, restricted to the upper halfspace xn+1 > 0.

It is customary to use the three models according to the context interchange-
ably, since some results are easier to work in one but not the others. See [2] for
a survey of the models and other important concepts in the field.

Theorem 2.1. Let x′, x ∈ Hn be two points in the hyperboloid model. Let d be
the hyperbolic distance between the points. Then

cosh(d) = −xtηx′.

Compare with [1], page 6.
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Proof. Denote by x2 the product xtηx. Consider the Lagrangian L = 1
2 ẋ

2 +
λ(x2 + 1), and the corresponding functional∫

L(x, ẋ)dt.

L is an energy Lagrangian with a corresponding undetermined coefficient re-
stricting solutions to the hyperboloid model. By working out Euler-Lagrange
equations, it turns out that extremal solutions must obey the system of equa-
tions

ẍi = λxi, x2 = −1.

Note that, since xtηx = −1, the velocity field in R(n,1) must obey xtηẋ = 0, and
differentiating once again, it turns out that

ẋ2 = λ.

Therefore, λ > 0, and the solutions for x are of the form xi = Aie
√
λτ +Bie

−
√
λτ .

Let A = (Ai, . . . , An+1) and B = (B1, . . . , Bn+1). Since x2 = −1, it follows that

A2e
√
λτ + 2AtηB +B2e−

√
λτ = −1

for any τ . Therefore,

A2 = 0, B2 = 0, 2AtηB = −1.

Suppose that x′ and x are points on the minimizing geodesic so described, say,
x = x(τ1), x′ = x(τ2). Then,

xtηx′ = x(τ1)tηx(τ2) = AtηB
(
e
√
λ(τ1−τ2) + e−

√
λ(τ1−τ2)

)
.

The result follows in this case, since in the right hand side,
√
λ(τ1 − τ2) cor-

responds to the geodesic distance between the points. Upon substituting the
expression for AtηB, it follows that the right hand side is − cosh(d) in this case.
The general result follows, since the hyperbolic model is symmetric and totally
geodesic.

Proposition 2.2. The antipodal map, −I acts by isometries on Rn,1, and there-
fore, the lower hyperboloid{

x ∈ Rn+1 : x2
1 + · · ·+ x2

n = x2
n+1 − 1, xn+1 < 0

}
is isometric to the upper.
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Observe that in the hyperboloid model, isometries can be easily described.

Corollary 2.3. Hyperbolic space is isometric to{
x ∈ Rn+1 : xtηx = −1

}
/ {±I}

with the metric induced by the projection from the ambient Rn,1 metric.

Proposition 2.4. The isometries of Hn are the isometries of η, up to a factor
±I,

Isom (Hn) = PO(n, 1) =
{
A ∈ GL(n+ 1,R) : AtηA = η

}
/ {±I} .

And the orientation preserving isometries are the isometries lying in the iden-
tity component of PO(n, 1):

Isom+ (Hn) = PO0(n, 1).

Proofs can be found in [4], e.g., section 3.114. For the general case, see [8],
theorem 2.4.4.

Theorem 2.5. For n odd, PO(n, 1) ∼= SO(n, 1), and PO0(n, 1) ∼= SO0(n, 1).
For n even, PO0(n, 1) ∼= PSO(n, 1).

Proof. If n is odd and A ∈ PO(n, 1), then detA = det (−A). The claim follows.

Remark 2.6. In the hyperboloid model, one usually describes PO(n, 1) as the
subgroup of O(n, 1) preserving the positive sheet. In relativity, this subgroup is
usually called the Lorentz orthochronous group.

Proposition 2.7. Hn is homogeneous, isotropic, and symmetric. The isotropy
group of en+1 in the hyperboloid model is isomorphic to O(n).

Corollary 2.8. Hn ∼= PO(n, 1)/O(n).

Proof. From the previous proposition, we know the isometry and isotropy groups.
Since Hn is simply connected, the result follows from the Theory of homogeneous
spaces.
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2.1 The projective model

Note that in the Poincaré disc model and halfspace model, it is obvious the
existence of a limiting boundary at infinity. In some sense, the projective model
complements the hyperboloid model, and makes rigorous the common sense, that
the null cone, should be the boundary at infinity of the hyperboloid.

Definition 2.9. The projective model is the domain in RPn given by{
x ∈ Rn+1 : xtηx < 0

}
/scale,

where scale refers to the equivalence relation given by x ∼ λx, λ ∈ R\{0}.

The projective model is also called Klein’s model [2].

Proposition 2.10. The application [x] 7→ x/
√
−x2 defines an isomorphism from

the projective model to the hyperboloid model of Hn.

By pulling back the hyperbolic metric, we obtain the metric in the projective
model. Note that, in the xn+1 = 1 patch for RPn, with coordinates [x1 : . . . :
xn : 1], the projective model is the disc x2

1 + · · ·+ x2
n < 1.

Theorem 2.11. In projective coordinates [x1 : . . . : xn : 1], the hyperbolic metric
takes the form ∑

dx2
1

1−
∑
x2
i

+
(
∑
xidxi)

2(
1−

∑
x2
i

)2
.

Proof. A straightforward calculation shows this.

Definition 2.12. The ideal boundary at infinity, ∂∞Hn, is the boundary of the
closure of Hn in RPn.

Given the previous definitions, we state the next theorem:

Theorem 2.13. ∂∞Hn is the set
{
x ∈ Rn+1 : xtηx = 0

}
/scale, and corresponds

to the limiting sphere
∑n

i=1 x
2
i = 1 in the projective patch [x1 : . . . : xn : 1].

Proof. It is immediate from the definition.

Note that the ideal boundary at infinity corresponds to the projectivization
of the null cone in Minkowski space. Using ∂∞Hn, we can extend a well-known
fact from the Poincaré and Half space models: Any geodesic in Hn is determined
by its end points in the boundary at infinity.

Theorem 2.14. Geodesics in Hn topologically correspond to the intersection of
projective lines with the projective model.



32 Garćıa, R.

Proof. Recall from the hyperboloid model that geodesics in Hn correspond to

hyperbolas in the paraboloid, parametrized by Ae
√
λt + Be−

√
λt, with A,B null

vectors. Upon projectivization, these geodesics correspond to projective lines,
whose intersection with ∂∞Hn are [A] and [B].

Corollary 2.15. A geodesic in Hn is determined by two distinct endpoints on
∂∞Hn.

3 AdSn Space

In this section, η will denote de quadratic form in Rn−1,2 given in matrix form
as In−1 0 0

0 −1 0
0 0 −1


.

The order of presentation is based in [3]. In some cases, I added proofs of
my own, or that can be found elsewhere.

Definition 3.1.

AdSn =
{
x ∈ Rn−1,2 : xtηx = −1

}
/ {±I}

with semi-Riemannian metric given by restricting the ambient metric.

In coordinates, before the quotient, anti de Sitter space is the locus of points
in Minkowski space, satisfying the equation x2

1 + · · · + x2
n−1 − x2

n − x2
n+1 =

−1. Therefore, it is a one sheeted hyperboloid. However, unlike hyperbolic
space, AdSn is a Lorentzian manifold. The general Theory of semi-Riemannian
manifolds can be found in [6].

Proposition 3.2. The restriction of the metric in Rn−1,2 to AdSn has signature
(n− 1, 1).

Proof. Since x2 = −1, the tangent space to AdSn in x is given by the equation

x1y1 + · · ·+ xn−1yn−1 − xnyn − xn+1yn+1 = 0.

i.e., the tangent space is orthogonal to x. As the metric is non degenerated and
x is timelike, the restriction to the tangent space must have lorentzian signature.

Note that the construction of AdSn is analogous to the construction of the
hyperboloid model. We will exploit this analogy very often.
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Definition 3.3. The causality of a vector in a semi-Riemannian space is given
by the sign of ||x||2, the corresponding semi-Riemannian norm, and can be one
of the following: 

spacelike, if ||x||2 > 0,

lightlike or null, if ||x||2 = 0,

timelike, if ||x||2 < 0.

The causality of a curve is the causality of its velocity vectors, provided all have
the same.

Remark 3.4. There is a notion in semi-Riemannian geometry of causal curves,
which are curves whose velocity vectors are either timelike of null, but can’t be
spacelike.

Remark 3.5. Since geodesics are curves of constant length, they must be curves
of the same causality at every point.

Theorem 3.6. Geodesics x(τ) in AdSn must be projections of solutions to ẍ =
λx in Rn−1,2, restricted to x2 = −1 and ẋ2 = λ.

Proof. The proof mimics the one given for the hyperboloid model. Let L =
1
2 ẋ

2 + λ
2

(
x2 + 1

)
be the energy Lagrangian with a Lagrange multiplier restricting

solutions to AdSn. Applying Euler-Lagrange equations, we obtain the conditions
on the second derivative and x(τ). Derive twice the expression x2 = −1, and
recall that x2 is a shorthand notation for xtηx. Then,

2ẋ2 + 2xtηẍ = 0.

The condition on ẋ follows, substituting ẍ = λx, and x2 = −1.

Solving the equation for ẍ and using the conditions for ẋ and x, we can have
an explicit description of the geodesics in anti de Sitter space.

Corollary 3.7. Geodesics in AdSn are given by:

Spacelike : x(τ) = Ae
√
λτ +Be−

√
λτ , A2 = B2 = 0, 2AB = −1,

Null : x(τ) = Aτ +B, A2 = 0, B2 = −1, AB = 0,

Timelike : x(τ) = A cos(
√
−λτ) +B sin(

√
−λτ), A2 = B2 = −1, AB = 0,

where AB stands for AtηB.

Remark 3.8. In rigor, we have just proved the expression for geodesics given the
initial data A,B, satisfying the conditions in the corollary.
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Corollary 3.9. Let x ∈ AdSn and p ∈ TxAdSn, then there exist constant points
A,B ∈ Rn−1,2, such that the local expression for the geodesic passing through x
at velocity p is one of those given in the previous corollary.

Proof. Since Rn−1,2 is flat, we can identify p with a point in ambient space
satisfying xtηp = 0. Let λ = ||p||2. Define A and B according to the causality
of p:

λ > 0 : A =
x+ p/

√
λ

2
, B =

x− p/
√
λ

2
,

λ = 0 : A = p, B = x,

λ < 0 : A = x, B = p/
√
−λ.

Remark 3.10. Unlike the hyperboloid model, in anti de Sitter space it is no longer
true that any two points can be joined by a geodesic. The causal structure, which
must be preserved, imposes restrictions for AdSn to be geodesically connected
as can be seen from the expressions in the previous corollary.

Lemma 3.11. If ψ, φ are isometries of a connected, semi-Riemannian manifold
X, such that for some p ∈ X, φ(p) = ψ(p), and dφp = dψp, then both isometries
are the same.

Proof. Since X is connected, any two points can be joined by piecewise geodesic
segments. On the other hand, suppose c(t) is a geodesic with domain [0, L]. As φ
and ψ are both isometries, it follows that φ◦c and ψ◦c are geodesics with the same
initial conditions. Therefore, both curves are the same, and φ(c(L)) = ψ(c(L)).
Finnally, any point x ∈ X can be joined with p by a piecewise geodesic segment
and the previous argument shows that φ(x) = ψ(x).

Theorem 3.12. The isometry group of AdSn is

PO(n− 1, 2) =
{
A ∈ GL(n+ 1,R) : AtηA = η

}
/ {±I} .

Proof. Since AtηA = η, each A ∈ O(n− 1, 2) is an isometry in the hyperboloid,
and descends to another isometry in PO(n − 1, 2). Let {e1, . . . , en+1} be the
canonical basis on Rn−1,2. We can consider {e1, . . . , en} as an non-degenerated
orthonormal frame on en+1. Let φ be an isometry of AdSn and define fn+1 =
φ(en+1), and f ′k = dφ · ek, for k = 1, . . . , n. We can parallel transport each
f ′k in the ambient space to a tangent vector fk at the origin and associate f ′k
with fk ∈ Rn−1,2 in the obvious way. Let ψ be the only linear isometry sending
{e1, . . . , en+1} to {f1, . . . , fn+1}. By the previous lemma, ψ ≡ φ.
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Theorem 3.13. AdSn is homogeneous.

Proof. We work in the hyperboloid and project to AdSn afterwards. Let

(x1, . . . , xn+1) ∈ AdSn.

Consider a transformation in O(n− 1, 2) of the form(
Rθ̄ 0
0 Rθ

)
,

where Rθ̄ is a rotation in Rn−1, and Rθ is a rotation in R2. By choosing the
rotations conveniently, we can map the point to (r′, 0, . . . , 0, r), where r′2− r2 =
−1. Next, choose a Lorentz boost,(

cosh(θ) sinh(θ)
sinh(θ) cosh(θ)

)
,

mapping (r′, r) to (0, 1). The matrixcosh(θ) 0 sinh(θ)
0 In−1 0

sinh(θ) 0 cosh(θ)

 ∈ O(n− 1, 2)

sends the last point to en+1.

Corollary 3.14. The isotropy group of AdSn is isomorphic to the projective
Lorentz group, PO(n− 1, 1).

Proof. Since AdSn is homogeneous, we can analyze the isotropy group of en+1.
A matrix in O(n− 1, 2) keeping en+1 fixed must necessarily be of the form(

A 0
0 1

)
,

where A ∈ O(n− 1, 1).

Corollary 3.15. AdSn ∼= PO(n− 1, 2)/PO(n− 1, 1).

Recall that a semi-Riemannian space X is symmetric if it is connected,
and for each p ∈ X, there is an isometry φ : X → X, such that φ(p) = p,
and dφp = −idp.

Corollary 3.16. AdSn is symmetric.
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Proof. Consider the map A ∈ O(n−1, 2), such that A·ek = −ek, for k = 1, . . . , n,
and A · en+1 = en+1, and the fact that AdSn is homogeneous.

Remark 3.17. If A ∈ O(n − 1, 2), the equation AtηA = η implies det(A)2 = 1.
Therefore, PO(n− 1, 2) ∼= SO(n− 1, 2) if n is odd.

Remark 3.18. AdSn is homogeneous but not isotropic, since causality restricts
the action of the isotropy group. However, it is a space of constant sectional
curvature. By standard methods in semi-Riemannian geometry, it can be proved
that its curvature is -1, e.g. [6], corollary 43. Given the natural embedding of the
hyperboloid, double covering, AdSn in Rn−1,2, this can be proved fairly easily
with Gauss’ equation.

Lemma 3.19 (Gauss’ equation in codimension one). Let M ⊂ X be an
isommetric immersion of one orientable and oriented semi-Riemannian man-
ifold M into another, and let Rm,Rm be the corresponding curvature tensors.
Then,

Rm(X,Y, Z,W ) = Rm(X,Y, Z,W ) + 〈〈∇XN,Z〉N, 〈∇YN,W 〉N〉
− 〈〈∇XN,W 〉N, 〈∇YN,Z〉N〉,

where N is the normal unitary vector field of M compatible with the induced
orientation.

For a proof of Gauss’ equation in the general case, see [6].

Theorem 3.20. AdSn is of sectional curvature -1.

Proof. Since Rn−1,2 is flat, and vectors in TxAdSn are defined by xtηp = 0, we
can identify the normal unitary to AdSn with the identity map: N(x) = x. Using
this and N2 = −1, Gauss’ equation reduces to

0 = Rm(X,Y, Z,W )− 〈X,Z〉〈Y,W 〉+ 〈X,W 〉〈Y, Z〉.

The result follows, since sectional curvature is calculated in non null vectors by

Rm(X,Y, Y,X)

||X||2||Y ||2 − 〈X,Y 〉2
.

Anti de Sitter space is the Lorentzian analog to hyperbolic space, in the
sense that both are spaces of constant negative curvature. Moreover, consider
the following theorem:
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Theorem 3.21. Let
_

AdSn be the universal cover of the hyperboloid model for

AdSn. Then,
_

AdSn is isometric to a product Hn−1 × R.

Note that, as the proof will show, the metric is not the semi-Riemannian
product metric.

Proof. Let x ∈ Hn, t ∈ R. By means of the hyperboloid model, there exists
x1, . . . , xn, such that xn > 0, x ∼ (x1, . . . , xn). Map (x, t) to

(x1, . . . , xn−1, xn cos(t), xn sin(t)).

This define a covering map from Hn−1 × R to AdSn. Since its domain is simply
connected, it must be diffeomorphic to the universal cover. By pulling back
the metric in AdSn, we obtain a expression for the metric in the embedding of
the cover in Rn+1:

dx2
1 + · · ·+ dx2

n−1 − dx2
n − x2

ndt
2.

If we denote by dx2 the Riemannian metric in Hn−1, the expression above sim-
plifies to dx2 − x2

ndt
2 which is manifestly Lorentzian.

Remark 3.22. Up to universal cover, the previous theorem says that anti de Sitter
space is a warped Lorentzian product of hyperbolic space and the real line. In
fact, AdSn is a special case of Robertson-Walker spaces [5].

3.1 The projective model

The construction is straightforward given the analogy with hyperbolic space. In
particular, it allows us to define a boundary at infinity. Note that every line in
Rn−1,2 intersects AdSn in either zero or two antipodal points.

Definition 3.23. The projective model for anti de Sitter space is given by the
open patch {

x ∈ Rn−1,2 : xtηx < 0
}
/scale ⊂ RPn,

with the metric induced by pulling back the metric in the hyperboloid double
cover.

Definition 3.24. The boundary at infinity of anti de Sitter space, ∂∞AdSn, is
the boundary of the closure of the projective model in RPn.

Note that by definition,

∂∞AdSn =
{
x ∈ RPn : xtηx = 0

}
/scale.
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Theorem 3.25 (Asymptotic behavior of geodesics in AdSn).

1. A spacelike geodesic is determined by two distinct endpoints in ∂∞AdSn.

2. A null geodesic limits in both directions to the same point in ∂∞AdSn.

3. Timelike geodesics are periodic with length 2π.

Proof. Every spacelike geodesic is of the form Ae
√
λτ + Be−

√
λτ , where A, B

are null vectors in Rn−1,2 with 2AB = −1. Note that these vectors can’t be
collinear; therefore, A and B correspond to distinct endpoints in ∂∞AdSn, and
the geodesic projects to the line spanned by both. Conversely, given two points
in ∂∞AdSn, which correspond to null vectors A,B ∈ Rn−1,2, after rescaling as
appropriated, we can assume 2AB = −1. Therefore, the points determine a
spacelike geodesic, up to rescaling the speed.

The result for null geodesics is analogous, and for timelike geodesics is straight-
forward.

Definition 3.26. A submanifold M ⊂ X of a semi-Riemannian manifold X is
spacelike if the restriction of the external metric is Riemannian. It is say to be
timelike if the metric has at least one timelike direction.

Theorem 3.27. Every spacelike k dimensional totally geodesic plane is isometric
to Hk. Every timelike non-degenerated k-dimensional totally geodesic plane is
isometric to AdSk.

4 AdS3

In three dimensions, there is a nice relationship between anti de Sitter space and
PSL(2,R), the space of 2× 2 real matrices of determinant one.
Let x = (x1, x2, x3, x4) ∈ R2,2. Associate the matrix

X =

(
x3 + x1 x2 + x4

x2 − x4 x3 − x1

)
, (1)

then xtηx = −det(X).

Theorem 4.1. The space of 2× 2 matrices with the product〈(
a b
c d

)
,

(
a′ b′

c′ d′

)〉
= −1

2
tr

((
a b
c d

)(
d′ −b′
−c′ a′

))
is isometric to R2,2.
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Proof. If there is such isometry, then −det should be the quadratic form asso-
ciated to the inner product. Recall the polarization identity:

〈X,Y 〉 =
||X + Y ||2 − ||X − Y ||2

4
,

provided the inner product exists. Writing X and Y in components, we arrive
to the expression given in the theorem. That this is an inner product in the
space of matrices comes from the fact that, after pulling back with (1), 〈X,Y 〉
corresponds to the metric in R2,2.

Corollary 4.2. If Y ∈ R2,2 is represented by an invertible matrix, then

〈X,Y 〉 = −1

2
det(Y )tr

(
XY −1

)
.

Remark 4.3. The expression in the theorem is expected, as a well-known fact
from calculus says that in GL(n,R), the derivative of det at the identity is tr.
The expression we have obtained can be seen as a correction to the formula for
the general case in 2× 2.

Definition 4.4. PGL(2,R)2,+ is the subgroup of PGL(2,R)×PGL(2,R), such
that, if (A,B) is a representant of each class, then det(A) = det(B) = ±1.

Theorem 4.5. Let A,B ∈ GL(2,R) be, such that det(A) = det(B) = ±1, then
the mapping

(A,B) ·X = AXB−1

defines an action by isometries of PGL(2,R)2,+ in AdS3.

Proof. The action is by isometries, because if X ∈ AdS3,

〈(A,B) ·X, (A,B) · Y 〉 = −1

2
tr
(
AXY −1A−1

)
= −1

2
tr
(
XY −1

)
,

where the last equality is due to the commutativity of the trace.

Hence, we have a monomorphism PGL(2,R)2,+ → PO(2, 2). It can be shown
that each mapping preserves orientation in AdS3, and that PGL(2,R)2,+ ∼=
PSO(2, 2). [3]

Remark 4.6. Orientation reversing isometries are given by another copy of
PGL(2,R)2,+, acting by

(
a b
c d

)
7→ A

(
d −b
−c a

)
B−1.

Recall that any 2 × 2 matrix with determinant 0 must be either the null
matrix or have rank 1. We have proved:
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Proposition 4.7.

∂∞AdS3 =
{
A ∈ R2×2 : rk(A) = 1

}
.

A well-known fact from linear algebra states that, any rank one matrix can
be written as vwt, for some vectors v, w ∈ Rn. Note that if v′, w′ is another
pair of vectors, such that vwt = v′w′t, there should exist a scalar λ, such that
v = λv′, w = 1

λw
′. Therefore, ∂∞AdS3 is diffeomorphic to RP 1 × RP 1, which

topologically is a torus.

Definition 4.8. Given a, b ∈ R, define(
a
b

)†
=
(
−b a

)
.

Proposition 4.9. If A ∈ GL(2,R), then (Av)† = v† det(A)A−1.

Theorem 4.10. There is a diffeomorphism ∂∞AdS3 ∼= RP 1×RP 1, such that the
action of the orientation preserving isometries, Isom+(AdS3) = PGL(2,R)2,+

is the product action.

Proof. By changing signs in w, we can show that a rank one matrix can be
expressed as A = vw†. This gives the desired isomorphism. Let A,B ∈ GL(2,R)
be, such that det(A) = det(B) = ±1, and X = vw†, a rank one matrix in
∂∞AdS3. Then,

(A,B) ·X = Avw†B−1 = Av (Bw)† .

In the three dimensional case, it is possible to describe the torus that corre-
sponds to the boundary at infinity explicity. In the projective model, ∂∞AdS3 ⊂
RP 3 is the set {

[x1 : x2 : x3 : x4] : x2
1 + x2

2 = x2
3 + x2

4

}
.

In the chart x4 = 1, ∂∞AdS3 corresponds to the hyperboloid x2
1 + x2

2 = 1 + x2
3,

whereas AdS3 is the region in R3 containing the axis x3. As a consequence of
corollary 3.7, the boundary at infinity is a ruled surface. We can give explicit
parametrization of the null lines generating it, as follows:

x1(s) = − sin(θ) s+ cos(θ), x3(s) = s,

x2(s) = cos(θ) s+ sin(θ), x4(s) = 1,
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then, x(s) = [x1(s) : x2(s) : x3(s) : x4(s)], s ∈ R, is a curve in the boundary at
infinity, and in the patch x4 = 1. Observe that in projective space,

lim
s→±∞

x(s) =

[
x1(s)

x3(s)
:
x2(s)

x3(s)
: 1 :

1

x3(s)

]
= [− sin(θ) : cos(θ) : 1 : 0] ;

i.e., in RP 3, x(s) can be extended to a continuous closed curve for each value of
the parameter θ ∈ [0, 2π], and this construction gives an explicit
description of ∂∞AdS3 as a torus.

This construction can be generalized in the case of odd dimensional spheres,
where a continuous, non-vanishing tangent vector field can be constructed.

Proposition 4.11. ∂∞AdS2n+1 is topologically the product of a circumference
and a sphere. In particular, ∂∞AdS3 is a torus.

Proof. Let [x′ : s′ : 1] ∈ ∂∞AdS2n+1, where x′ ∈ R2n, s′ ∈ R, and such that
||x′||2 = s′2 + 1. Here, ||x′||2 stands for the Euclidean norm in R2n. Write x′ in
the cannonical basis as

x′ =
n∑
i=1

(
x′i

∂

∂xi
+ y′i

∂

∂yi

)
.

Let

xi =
x′i + s′y′i
1 + s′2

, yi =
−s′x′i + y′i

1 + s′2
.

The vectors w, v ∈ R2n defined by the equations

w =
n∑
i=1

(
xi

∂

∂xi
+ yi

∂

∂yi

)
, v =

n∑
i=1

(
−yi

∂

∂xi
+ xi

∂

∂yi

)
are both unitary and perpendicular with respect to the Euclidean inner product.
Moreover, a direct calculation shows that x′ = s v+w. Define γw(s) = [s v+w :
s : 1] ∈ ∂∞AdS2n+1, and calculate the limit:

lim
s→±∞

γw(s) =

[
v +

1

s
w : 1 :

1

s

]
= [v : 1 : 0].

Therefore, γw can be extended to a continuous, closed curve in the infinite
boundary, such that the mapping (s, w) 7→ γw(s) extends to a diffeomorphism
S1 × S2n−1 ∼= ∂∞AdS2n+1.



42 Garćıa, R.
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Ribbon graphs and the fundamental group of surfaces ∗

Rodrigo Dávila Figueroa †

Abstract

In the present work, we are going to give a formal exposition of the ribbon
graphs topic based on notes of Labourie [6], since is difficult to find as such in the
literature. As an application, we are going to compute the fundamental group of
surfaces using ribbon graphs as a combinatorial version of it.

Keywords: Ribbon graphs, fundamental group of surfaces.

1 Introduction

The ribbon graphs gain their mathematical popularity through the work of
Penner [7] who introduce a cell decomposition of Riemann moduli space, which
was later used in Kontsevich’s proof of Witten conjecture [5]. The ribbon graphs
are very useful for the study of the representation variety of surface groups
Hom(π1(S), G)/G for a given surface S and a group G. In the present work, we
are going to define the ribbon graphs, then we are going to use them to proof the
classification Theorem of surface, and we are going to compute the fundamental
group of a surface using the fundamental group of ribbon graphs.

2 Surfaces as 2-dimensional manifolds

Definition 2.1. A surface is a connected 2-dimensional smooth manifold.

A 2-dimensional chart for a surface S is a pair (U, φ), where U ⊂ S is an
open set and φ : U → φ(U) ⊂ R2 is an homeomorphism on its image.

A collection of charts {(Ui, φi)}i∈I is called an atlas for S if S = ∪i∈IUi, and
we say that the atlas is smooth or C∞ if the change of coordinates φi ◦ φ−1

j :
φj(Ui ∩ Uj) → φi(Ui ∩ Uj) is a smooth function for all i, j ∈ I.
Given a function f : S → R, we say that f is smooth if f ◦ φ−1

i : φi(Ui) → R is
a smooth function from R2 to R.
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Figure 1: A surface.

Definition 2.2. Let S be a surface with atlas {(Ui, φi)}i∈I . The atlas is called
oriented if the Jacobian

Jac(φi, φj) := det(D(φi ◦ φ−1
j ))

is positive for all i, j ∈ I. Then we say that S is oriented.

2.1 Surfaces with boundary

Let H+ := {(x, y) ∈ R2 | y ≥ 0} be the closed upper half plane and ∂H+ :=
{(x, y) ∈ R2 | y = 0} its boundary.

Given a surface S, a two dimensional chart with boundary is a pair (U, φ),
where U is an open subset of S and φ : U → V ⊂ H+ is an homeomorphism
into an open subset V of H+. The subset ∂U := φ−1(φ(U) ∩ ∂H+) ⊂ U is the
boundary of U .

Definition 2.3. Let V1, V2 be open subsets of H+. A function f : V1 → V2 is
smooth if there is an open subset Ṽ1 of R2 with Ṽ1 ∩ H+ = V1, and a smooth
function f̃ : Ṽ1 → R2, such that f = f̃ |V1 .

An atlas of charts with boundary {(Ui, φi)}i∈I is smooth if the change of
coordinates φi ◦ φ−1

j : φj(Ui ∩ Uj)→ φi(Ui ∩ Uj) is smooth for all i, j ∈ I in the
sense of the last definition.

Definition 2.4. A surface with boundary is a surface S with a smooth atlas of
charts with boundary.

Given a surface S with boundary, we say that x ∈ S is a boundary point if
x ∈ ∂S for any chart (U, φ) containing it. The set of boundary points of S is
denoted by ∂S.
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2.2 Gluing surfaces

We need to know how to construct new surfaces from surfaces with boundary;
in order to do this, we need to glue the surfaces along their boundaries and we
need to know how they look like in a neighborhood of a boundary component.
For this, we have to use the following lemma:

Lemma 2.5 (Collar Lemma). Let S be a surface with boundary ∂S and C ⊂
∂S a connected component. Then there is a neighborhood U of C in S and a
diffeomorphism ψ : U → V into a subset V ⊂ R2 of the form V ' C × [0, 1]
mapping C into C × {0}.

Figure 2: Collar Lemma.

Let S1, S2 be two surfaces with boundary. Let C1 and C2 be two diffeomorphic
components of ∂S1 and ∂S2 respectively. Then the gluing of a surface is as
follows: Let f : C1 → C2 be a diffeomorphism. Consider the disjoint union
S1 t S2 and the following equivalence relation:

x ∼ y ⇔ y = f(x)

for x ∈ C1 and y ∈ C2. Then S1 ∪f S2 = S1 tS2/ ∼ and we call this quotient the
gluing surface of S1 and S2.

The atlas of S1 ∪f S2 is now given in the following way: First, we take a
smooth atlas {(Ui, φi)}i∈I for S1\C1, and a smooth atlas {(Vj , ψj)}j∈J for S2\C2.
We denote by ι1 : S1 ↪→ S1 ∪f S2, ι2 : S2 ↪→ S1 ∪f S2 the canonical inclusions.
Then {(ι1(Ui), φi ◦ ι−1

1 )}i∈I ∪{(ι2(Vj), ψj ◦ ι−1
2 }j∈J is an atlas for the complement

of the gluing curve in S1 ∪f S2.
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Figure 3: Gluing surfaces.

Figure 4: Atlas for the complement of the gluing curve in S1 ∪f S2.

Now we consider a chart for the gluing curve which is compatible with the
charts given above. Using the Collar Lemma we construct this charts. Let
B1, B2 be collar neighborhoods of C1, C2 respectively, where Ci are connected
components of ∂Si for i = 1, 2, and g1 : B1 → C1 × (−1, 0] a diffeomorphism,
such that g1(C1) = C1 × {0}, and g2 : B2 → C2 × [0, 1) a diffeomorphism, such
that g2(C2) = C2×{0}. Now consider the open subset O := B1∪f B2 of S1∪f S2

and fix an emmbeding ι : C2 × (−1, 1) → R2. This is possible since C2 is either
an interval or a circle. We define coordinates for O by ψ : O → R2 as

ψ(x) =

{
(ι ◦ (f, id) ◦ g1)(x) if x ∈ B1

(ι ◦ g2)(x) if x ∈ B2,

where f : C1 → C2 is a diffeomorphism.

We have proven the following proposition:
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Figure 5: Atlas for the gluing curve.

Proposition 2.6. S1 ∪f S2 is a surface with smooth atlas given by

{(ι1(Ui), φi ◦ ι−1
1 )}i∈I ∪ {(ι2(Vj), ψj ◦ ι−1

2 )}j∈J ∪ {O, ψ}.

Remark: Given two oriented surfaces with boundary S1, S2, we can give
a unique orientation to S1 ∪f S2 compatible with the orientation of S1 and S2

using an orientation reversing diffeomorphism f : C1 → C2, where C1 and C2 are
connected components of ∂S1 and ∂S2 respectively.

3 Surfaces as combinatorial objects

3.1 Ribbon graphs

In an informal way, a graph is a collection of points called vertex which are joined
by some lines called edges as in the Figure 6. If we choose an orientation on the
edges, we say that the graph is oriented or directed. The following definition
gives us a formal description of these objects:

Definition 3.1. An oriented graph Γ is a triple Γ = (V,E, i), where V is a finite
set V = {v1, . . . , vn} whose elements are called vertex and E is a finite set whose
elements are called edges, and a map i : E → V × V with i(e) = (e−, e+), where
e− is the origin of the edge e and e+ is the end of the edge e.

We say that an edge and a vertex are incident if the vertex is on the image of
the edge under the map i. The quantity ajk = |i−1(vj , vk)| gives us the number
of edges that connect two vertex vj and vk.

The degree or valence of a vertex vj is the number given by

deg(vj) =
∑
k 6=j

ajk + 2ajj ,
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Figure 6: Example of a graph Γ.

which is the number of edges incident to vj . A loop, this is an edge with just
one incident vertex, contributes twice to the degree.

Definition 3.2. The edge refinement of an oriented graph Γ = (V,E, i) is the
graph ΓE = (V t VE , E t E, iE) with a point added at each edge as a degree 2
vertex, where VE denotes the set of this vertices. The set of vertices of ΓE is
V t VE and the set of edges is E tE. The incidence relation is described by the
map iE : E tE → V × VE because each edge of ΓE connects exactly one vertex
of V to a vertex of VE , and an edge of ΓE is called a half-edge.

For each vertex v ∈ V of ΓE , the set i−1
E ({v} × VE) consists of half-edges

incident to v and we have deg(v) = |i−1
E ({v} × VE)|.

Figure 7: Edge refinement ΓE of the graph Γ.

Remark: Let e ∈ E be an edge of Γ, then i(e) = (e−, e+). We denote
by e0 the vertex added on the edge e in the refinement of Γ, i.e, e0 ∈ VE
and we denote by e− and e+ in EtE the edges, such that iE(e−) = (e−, e0) and
iE(e+) = (e0, e+).

Let Γ = (V,E, i) be an oriented graph and let I : E → E be an involution
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map with I(e) = ē, where e− = e+ and e+ = e−. We call the pair (e, ē) ∈ E×E
a geometric edge of the graph (Γ, I).

The geometric realization |Γ|I of the graph (Γ, I) is a topological space |Γ|I =
E × [0, 1]/ ∼, where ∼ is the equivalence relation generated by the relations:

• (e, t) ∼ (ē, 1− t)

• If e, f ∈ E with e− = f−, then (e, 0) ∼ (f, 0)

• If e, f ∈ E with e+ = f+, then (e, 1) ∼ (f, 1)

Remark: The geometric realization of a graph Γ = (V,E, i) not always
can be drawn on a plane R2 without intersections; however, we can draw the
geometric realization of a graph on R3. To do this, let p : R → R3 be the
function p(t) = (t, t2, t3), and C be the curve C = {p(t) : t ∈ R}. Now we only
need to take any vertex vi ∈ V into the curve, and to see that the edges do not
intersect, we need only show that given four vertex on C they are not coplanar.
Now for any four points v1, v2, v3, v4 in R, the volume of the tetrahedron T formed
by p(vi) ∈ C is proportional to a Vandermonde determinant:

6V ol(T ) = det((p(v2)− p(v1)) · [(p(v3)− p(v1))× (p(v4)− p(v1))])

= det


1 v2 v2

1 v3
1

1 v2 v2
2 v3

2

1 v3 v2
3 v3

3

1 v4 v2
4 v3

4

 6= 0,

this implies that any four points on C are not coplanar. As a result, the edges of
the tetrahedron T intersect only the appropriate vertex. Now we take arbitrary
n distinct points pi in C. The argument above shows that if we form the graph
Γ from this n points, the edges intersect only in the appropriate vertex and this
gives us an embedding of the given graph Γ into R3.

Now using this fact, we can project the graph into the plane in a such way
that the edges cross over or under as in Figure 8.

Figure 8: Geometric realization of a graph with under and over crossings.
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In the same way, we can make the geometric realization of the refinament of
Γ.

Now, let’s we define morphisms between graphs.

Definition 3.3. A traditional graph isomorphism φ = (α, β) between two
graphs Γ1 = (V1, E1, i1) and Γ2 = (V2, E2, i2) is a pair of bijective maps:

α : V1 → V2, β : E1 → E2

that preserves the incidence relation, i.e., the following diagram commutes:

E1

β
��

i1 // V1 × V1

α×α
��

E2 i2
// V2 × V2

.

Theorem 3.4. Let (Γ1, I) and (Γ2, I) be isomorphic graphs, then |Γ1|I and |Γ2|I
are homeomorphics.

Proof. Let φ = (α, β) : Γ1 → Γ2 be an isomorphism of graphs with β(e) = f or
β(e) = f̄ . Now, consider Ej with j = 1, 2 with the discrete topology; since φ is
an isomorphism, we have that β : E1 → E2 is an homeomorphism and we define
the function

β × id : E1 × [0, 1]→ E2 × [0, 1],

and we have the quotient maps qj : Ej × [0, 1]→ |Γj |I with j = 1, 2. To see that
this maps induces an homeomorphism on the geometric realization we just need
to show that the following diagram commutes and the functions are continuous:

E1 × [0, 1]

q1
��

β×id // E2 × [0, 1]

q2
��

|Γ1|I // |Γ2|I

To do this, we define the function |φ| : |Γ1|I → |Γ2|I which maps [(e, t)] 7→
[(β(e), t)], where [ ] denotes the equivalence class. Let’s see that |φ| is well
defined: If we have [(e, t)], then (e, t) ∼ (ē, 1 − t) takes (ē, 1 − t). Now since
β(e) = f or β(e) = f̄ , then β(ē) = f̄ or β(ē) = f . Suppose that β(e) = f ,
the other case is similar, then β(ē) = f̄ , but (f̄ , 1 − t) ∼ (f, t) = (β(e), t);
therefore, [(β(ē), 1− t)] = [(β(e), t)]. Now since the diagram in the definition 2.3
commutes, we have that [(e, 0)] 7→ [(β(e), 0)] and [(e, 1)] 7→ [(β(e), 1)]; therefore,
the map is well defined and the diagram commutes. Let’s see that the function
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|φ| is continuous. Let U ⊂ |Γ2|I be an open subset, since q2 is a quotient map,
therefore, continuous, we have that q−1

2 (U) is open in E2 × [0, 1], and β × I is
continuous; then (β× id)−1(q−1

2 (U)) is an open subset of E1× [0, 1] and we have
that q1 is a quotient map, therefore, an open map; then q1((β×[0, 1])−1(q−1

2 (U)))
is open in |Γ1|I ; therefore |φ| is continuous and since β×id is an homeomorphism,
then |φ| is an homeomorphism.

Now, let’s consider graphs with more structure. To do this, we need the
notion of cyclic ordering on a finite set S.

Definition 3.5. A cyclic ordering in a finite set S is a bijection σ : S → S, such
that for all x ∈ S the orbit {σn(x)}n∈Z = S. Given x ∈ S, we will call σ(x) the
successor of x and σ−1(x) the predecessor of x.

Definition 3.6 (Ribbon graph). Let (Γ, I) be a graph. For v ∈ V , the star of v

Ev = {e ∈ E : v = e−}

is the set of edges starting from v. A ribbon graph is the graph (Γ, I), together
a cyclic ordering on the star of every vertex.

Figure 9: Ribbon graph.

Remark:

1. We can see the star of a vertex v ∈ V as the set of semi-edges starting on
v when we consider the refinement of the graph and we denote this set as
E∗v .

2. We can consider isomorphisms of ribbon graphs. We just need to ask that
preserve the cyclic ordering on each star, this is, that the following diagram
commutes:

E1
v

σ1
v
��

β // E2
w

σ2
w
��

E1
v β

// E2
w

,
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where β : E → E is a bijection from the edges of the graphs

φ = (α, β) : Γ1 = (V1, E1, i1, I)→ Γ2 = (V2, E2, i2, I)

and σ1
v is the cyclic ordering on E1

v , and σ2
w is the cyclic ordering on E2

w.
This isomorphism induces an homeomorphism on the geometric realization
of the ribbon graph preserving the cyclic ordering on it.

For all v ∈ V , we can consider an embedding on R2 of the geometric real-
ization of E∗v ; the orientation of R2 induces a cyclic ordering on each star in the
following way: let’s consider a circle with center on v and radius one (we can
suppose this because we can consider the length of each edge on |E∗v |I as 1),
since the circle gets an orientation from R2 and we can define the cyclic ordering
from this orientation (see Figure 9).

Lets consider surfaces from the ribbon graphs. In order to do this we need
first to embed the geometric realization of the graph in a open oriented surface
(this is not always possible to do in the plane).

Lemma 3.7. Every ribbon graph can be embedded in an open oriented surface
such that its cyclic ordering are induced from the orientation of the surface.

Proof. We construct the surface in the following way: Let v ∈ V be a vertex
of (Γ,I) and |E∗v |I the geometric realization of the star at v in the refinement of
(Γ,I); consider an embedding of |E∗v |I in R2 and take a disc D(v) with center on
v and radius 1 (we can consider this length for each edge in |E∗v |I). Now we take
a tubular neighborhood Uv ⊂ D(v) of |E∗v |I with many boundary components as
elements in E∗v labelled in the following way by the elements of Ev. Start with
an arbitrary edge e ∈ |E∗v |I , then the following boundary component is labelled
by σv(e), where σv is the cyclic ordering of |E∗v |I and so on.

Since we do this for all vertex v ∈ V , using the Gluing Lemma, we now
glue each star with the other ones in the following way: For e ∈ |E∗v |I and
e′ ∈ |E′∗v |I , we glue their boundary components if we have that iE(e) = (v, e0)
and iE(e′) = (e0, v

′), this is, that e = e+ and e′ = e− in the refinement of (Γ, I)
(see Figure 11), and we make this gluing, such that the orientations are reversed,
then we get an oriented open surface. Since in each vertex the ordering of its
corresponding star is preserved for the process of gluing, then the orientation of
the surface is compatible with σv.

The surface constructed in the proof of Lemma 3.7 is called the associated
ribbon surface of the graph.

We can associate different ribbon graphs to a one graph, all depends on the
cyclic ordering in the edges (see Figure 12) and we get different associated ribbon
surfaces (see Figure 13).
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Figure 10: Tubular neighborhood of the star and its orientation.

Figure 11: Gluing of the stars.

In order to embed ribbon graphs into closed surfaces, we need to close
the holes in the associated ribbon surface. To do this, we define the faces of
the associated ribbon surface.

Definition 3.8. Let (Γ = (V,E, i), I) be a ribbon graph. A face is an n-tuple
(e1, . . . , en) of edges, such that e+

p = e−p+1 mod n and σe+p (ēp) = ep+1 mod n for all

1 ≤ p ≤ n, where σe+p is the cyclic ordering on the star of e+
p .

The boundaries of this faces will be the boundaries of the disc we will be
attaching at our associated ribbon surface.

Definition 3.9. A graph Γ embedded in a surface S is filling if each connected
component of S\|Γ|I is diffeomorphic to a disc.

Now we have:

Proposition 3.10. Every ribbon graph (Γ, I) has a filling embedding into a
compact oriented surface S. The connected components of S\|Γ|I are in bijection
with the faces of the associated ribbon surface of Γ.
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Figure 12: Ribbon graphs Γ1 and Γ2 from the same graph Γ.

Figure 13: Associated ribbon surfaces of Γ1 and Γ2.
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Proof. Since Γ is a ribbon graph, we have that the boundary components of the
associated ribbon surface of Γ define closed curves homeomorphic to a circles.
We glue a disc for each of these curves. Therefore, we thus obtain a closed
surface and is followed immediately that the connected components of S\|Γ|I
are in bijection with the faces of the associated ribbon surface.

We will see that the surface obtained from the proposition 3.10 is unique
in a very strong sense. To see this, we will need the following basic fact from
point-set topology:

Lemma 3.11 (Clutching Lemma). Let X = U ∪ V be a decomposition of a
topological space X in two closed sets U and V . If f1 : U → Y and f2 : V → Y
are continuous maps from U and V into some topological space Y , such that
f1|U∩V = f2|U∩V , then the induced map f : X → Y is continuous.

Using this, we can show the following result:

Proposition 3.12. Let Γ1 ⊂ S1 and Γ2 ⊂ S2 be filling ribbon graphs of compact
oriented surfaces, and let φ : Γ1 → Γ2 be an isomorphism of ribbon graphs. Then
φ induces an homeomorphism on the geometric realization |φ| : |Γ1|I → |Γ2|I and
this extends to an homeomorphism between S1 and S2.

Proof. Since φ is an isomorphism of ribbon graphs, then by Theorem 3.4 this
extends to an homeomorphism of the geometric realization |φ| : |Γ1|I → |Γ2|I .
Let SΓ1 and SΓ2 be the associated ribbon surfaces of Γ1 and Γ2 respectively, then
by the Clutching Lemma this homeomorphism extends to an homeomorphism of
the closure of the associated ribbon surfaces.

Since Γ1 and Γ2 are filling, we have that

S1\|Γ1|I = tf∈FDf , S2\|Γ2|I = tg∈GD′g,

where Df and D′g are discs. Then, we have that

S1 = SΓ1 ∪ (tf∈F d̄f ), S2 = SΓ2 ∪ (tg∈Gd̄′g),

where df and d′g are slightly smaller discs than Df and D′g, and

SΓ1 ∩ (tf∈F d̄f ) = tf∈F∂d̄f , SΓ2 ∩ (tg∈Gd̄′g) = tg∈G∂d̄′g
are the unions of discs. By the Clutching Lemma is suffices to construct for each
f ∈ F an homeomorphism from df to d′g, which agrees on the boundary ∂d̄f
with the extension |φ| to SΓ1 . But if ψ : S1 → S1 is any homeomorphism of
circles, then there is an obvious way to extend it to the corresponding disc. In
fact, each x in the disc may be written in polar coordinates as x = reiθ for some
r ∈ [0, 1] and some eiθ ∈ S1. Then, we can simply define ψ(reiθ) = r|φ|(eiθ) to
obtain the desired homeomorphism.
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Figure 14: Closed surfaces from the ribbon graphs Γ1 and Γ2.

Combining propositions 3.10 and 3.12, we have:

Corollary 3.13. For any ribbon graph Γ there exists a unique compact oriented
surface SΓ (up to homeomorphism), such that Γ can be embedded as a filling
ribbon graph into SΓ.

Corollary 3.13 will enable us to classify surfaces up to homeomorphism and
allows us to construct surfaces from ribbon graphs. The following proposition is
a converse of this corollary:

Proposition 3.14. Every compact oriented surface admits a filling ribbon graph.

The proof of this proposition is similar to find a triangulation of the surface.
Then by a Theorem of Cairns and Whitehead, we have that every smooth mani-
fold admits a triangulation; since every surface is a two dimensional
smooth manifold we are done (See [2] and [8]).

4 Classification of surfaces I: Existence

By Corollary 3.13 a convenient description of the compact oriented surfaces is
given by their underlaying filling ribbon graph. We consider a family Γg, g ≥ 1
of filling ribbon graphs given in the following way: Take g-copies of the graph
Γ1 shown in Figure 15, we call this graph a petal.
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Figure 15: A petal Γ1.

Then we glue g-copies of the petal by they vertex to get a graph Γg with g
petals, as is shown in the following figure:

Figure 16: 5-petals ribbon graph Γ5.

Using Definition 3.8, we can see that Γ1 has one face and with some mental
gymnastics, we can see that the associated oriented closed surface S1 := SΓ1 is
a torus.
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Figure 17: Surface S1.

Similarly, each copy of Γ1 in Γg is a torus with one puncture and we glue two
consecutive torus by their punctures. Thus, we get a surface Sg := SΓg , which
is a handlebody with g handles.

There is another useful description of Sg as follows: Let Dg = Sg\|Γg| be the
disc in Sg, which corresponds to the only face of Γg. Then, Sg is obtained by
gluing the boundary of the disc Dg in the following way: Let ai, bi be two edges
of the i-th copy of Γ1 in Γg. Since each oriented edge of Γg, this is, ai, ai, bi, bi,
occurs only once in the boundary of Dg, then we can describe the boundary of
Dg by the series of edges given by

a1, b1, a1, b1, . . . , ag, bg, ag, bg.

We can see this for the case g = 2 as is shown in Figure 18:

Figure 18: The surface S2 and its gluing polygon.

It is convenient to define S0 := S2, the two-sphere. Later we see that given
any filling ribbon graph, we can deform it to any of the Γg graphs. Now we can
state the first part of the Classification Theorem.

Theorem 4.1. Every oriented compact surface S is homeomorphic to one of the
surfaces Sg for g ≥ 0.

Proof. By Proposition 3.14, we can choose a filling ribbon graph Γ for the surface
S. If Γ doesn’t have edges, then S must be the surface S0. Thus, we may
assume that Γ has at least one edge. Now, we will deform the graph Γ to
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obtain one of the graphs Γg without changing the filling property in the process.
In this way the theorem follows from Corollary 3.13.

First we deform the graph Γ, so we see that the surface is obtained from
gluing the boundary of a polygon, in the following way:

1. Eliminating faces: Let’s assume that Γ has more than one face. Then,
there is a geometric edge (e, ē), such that e and ē are in different faces.
Let Γ′ be the graph obtained by eliminating from Γ the edges e and ē, this
is, Γ′ = Γ\{e, ē}, then Γ′ is still filling and has one face less than Γ, as is
shown in Figure 19:

Figure 19: Eliminating edges.

If we iterate this process, we get a filling ribbon graph with only one face.

2. Eliminating vertices: Let Γ = (V,E, I) be a filling ribbon graph and φ :
|Γ|I ↪→ S be an embedding on the surface S. If Γ has more than one vertex,
lets say e− and e+, then there is an edge e joining them. Let Γ′ = (V ′, E′, I)
be a new filling ribbon graph and φ′ : |Γ′|I ↪→ S an embedding in S, where:

• The new set of vertices is obtained by crushing the vertex e− and e+

in a single vertex ec, thus V ′ = (V \{e−, e+}) ∪ {ec}.
• The new set of edges is given by E′ = E\{e, ē}.
• The map φ′ : |Γ′| ↪→ S is defined by sending the new vertex into a

point on the geometric image of φ(e), and is extended to the edges
which previously started from e∓.

Again this process does not change the filling property and reduce the
number of vertices by one without increasing the number of faces, as in
the following figure.

Iterating this process, we obtain a graph with only one vertex.

Then by (1) and (2), we can assume that the graph Γ has only one vertex and one
face. Therefore, we get that S is obtained by gluing the sides of a polygon labelled



60 Dávila-Figueroa, R.

Figure 20: Eliminating vertices.

by the edges of the graph and by definition of face, every oriented edge appears
once, then the gluing is given by identifying e and ē with reversed orientation.

If there are no edges left, then S is the surface S0 and we are done. Thus,
assume that Γ has at least one edge. Let (a, ā) and (b, b̄) geometric edges from
Γ. We will call the pair ((a, ā), (b, b̄)) linked if their relative position is as in the
following figure:

Figure 21: Linked geometric edges.

Claim: Any geometric edge of Γ is linked to at least other geometric edge.
Proof : Assume that (a, ā) is not linked to any other edge, then this edge would
produce an additional face since Γ is a ribbon graph, but this contradicts the
assumption that there is only one face.

The following claim let us rearrenge the labelling of the sides of the polygon
in such way that we obtain a graph Γg:

Claim: Given a linked pair (a, ā), (b, b̄) of geometric edges, there is a way of
rearrenging the labelling of the polygon without changing the resulting quotient
space, such that

• a, b, ā, b̄ appears as a subsequence of the sides of the polygon.
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• no subsequence of type c, d, c̄, d̄ is destroyed during this process.

Proof : First we add an edge to obtain two faces as is shown in Figure 22.

Figure 22: Adding an edge.

Then we erase in the graph the green edges, which has the effect on the
polygon to glue together these two green lines in the red one (see Figure 23):

Figure 23: Eliminating the green edges.

Then we repeat this procedure two more times as is depicted in Figure 24. In
the final picture, we have created an additional subsequence of the form a, b, ā, b̄,
which proves the claim.

Figure 24: Eliminating the green edges.
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Then the resulting surface (which is homeomorphic to S) is thus brought into
a new position, such that all the edges of its polygon are of the form

a1, b1, a1, b1, . . . , ag, bg, ag, bg

and we conclude the proof of the theorem.

5 The fundamental group of a surface

In this section, for the proofs of the results, we refer the lector to the books [4]
and [1].

5.1 The fundamental group of a topological space

At this moment, we have proved half of the Classification Theorem; in order to
prove the other half, we need to know how to distinguish two surfaces Sg and
Sg′ when g 6= g′. In order to show this, we need an invariant that distinguishes
the surfaces Sg and Sg′ from each other.

This invariant is the fundamental group and we briefly recall its definition:

Definition 5.1. Let X,Y be topological spaces:

• A parametrised loop in X based at x0 ∈ X is a continuous map γ : [0, 1]→
X with γ(0) = x0 = γ(1). We denote by Ω(X,x0), the set of loops in X
based at x0.

• The composition of two based loops γ0, γ1 ∈ Ω(X,x0) is defined as:

(γ0 ∗ γ1)(t) =

{
γ0(2t), 0 ≤ t ≤ 1

2
γ1(2t− 1), 1

2 ≤ t ≤ 1.

• Let f0, f1 : Y → X be continuous maps which agree on a subset A ⊂ Y .
Then, f0 and f1 are called homotopic relative to A, denoted by f0 '
f1(relA), if there exists a map H : [0, 1]× Y → X with

H(0, y) = f0(y)

H(1, y) = f1(y)

∀a ∈ A, H(t, a) = f0(a) = f1(a)

the map H is called homotopy relative to A. A space X is called con-
tractible if the identity map id : X → X is homotopic to a constant map
x 7→ x0 for some x0 ∈ X.
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• Two based loops γ0, γ1 ∈ Ω(X,x0) are called homotopic if there is a homo-
topy relative to {0, 1}. The set π1(X,x0) = Ω(X,x0)/ ∼, where ∼ is the
equivalence relation given by γ0 ∼ γ1 ⇔ γ0 ' γ1(rel{0, 1}).

Theorem 5.2. The set π1(X,x0) is a group with the operation given by ∗ :
π1(X,x0) × π1(X,x0) → π1(X,x0), [γ0] ∗ [γ1] = [γ0 ∗ γ1], where [ ] denotes a
homotopy class and ∗ is the composition of loops.

Definition 5.3. The group (π1(X,x0), ∗) is called the fundamental group of the
space X based on x0.

Let x0, x1 ∈ X and let γ : [0, 1] → X with γ(0) = x0, γ(1) = x1. Then, the
map

π1(X,x0)→ π1(X,x1), [α] 7→ [γ ∗ α ∗ γ̄]

is an isomorphism, where the composition of paths is defined as composition of
loops above and γ(t) := γ(1 − t). The isomorphism type of the fundamental
group of an arcwise connected space X not depends on the base point.

Definition 5.4. An arcwise connected space X is called simply-connected if
π1(X,x0) is trivial for some (and hence any) x0 ∈ X.

Examples:

1. π1(x0) = {1}, where x0 is a point.

2. π1(S1) = Z.

3. π1(S1 × R) = R.

4. π1(Sn) = {1} for n ≥ 2.

5. π1(∞) = F2, the free group on two generators.

5.2 Coverings and the fundamental group

Computing the fundamental group using only the definition is in many cases
impossible. One common way to compute the fundamental group is by looking
the space as a quotient of a simply-connected space. To do this, we need the
following notions:

Definition 5.5 (Group action). Let G be a group and S a nonempty set. Then,
G is said to act on S if there is function from G × S to S, usually denoted
(g, s) 7→ gs, such that for the identity e ∈ G, es = s for all s ∈ S, and for all
g, h ∈ G and s ∈ S, (gh)s = g(hs).
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Remark: The previous definition is for left actions, but we can define right
actions as follows: S ×G→ S with (s, g) 7→ sg and with the same properties.

Definition 5.6. Suppose that G is a group which acts on a set S. If s ∈ S, let
G(s) = {gs|g ∈ G}. The set G(s) is called the orbit of s. The stabilizer of s is
the subset Gs = {g ∈ G|gs = s}.

Definition 5.7. Let Γ be a discrete group which acts on a space M . Then the
action is called free if it has no fixed points; in other words, the stabilizer Γx is
trivial for all x ∈ M . The action is properly discontinuous if for any compact
set K ⊂M the set

ΓK = {γ ∈ Γ|γK ∩K 6= ∅}

is finite.

The reason of why we need these tools is the following:

Theorem 5.8. Let Γ act on a space X proper discontinuously. Then X is
Housdorff if and only if X/Γ is Housdorff.

Now we introduce some basic notions of covering spaces.

Definition 5.9. A covering space of a space X is a space X̃ together with a
map p : X̃ → X, such there is an open cover {Uα}α∈I of X, such that for each
α, p−1(Uα) is a disjoint union of open sets in X̃, each of which is mapped by p
homeomorphically onto Uα.

Definition 5.10. Given a covering p : X̃ → X, a lifting of a map f : Y → X is
a map f̃ : Y → X̃, such that f = p ◦ f̃ .

Proposition 5.11 (Homotopy lifting property). Given a covering space p : X̃ →
X, a homotopy ft : Y × [0, 1] → X, and a lifting f̃0 : Y → X̃ of f0, there is a
unique homotopy f̃t : Y × [0, 1]→ X̃ that lifts ft.

Proposition 5.12. The induced map p∗ : π1(X̃, x̃0) → π1(X,x0) is injective.
The image subgroup p∗(π1(X̃, x̃0)) consists of homotopy classes of loops in X
based at x0 that lift to loops in X̃ based at x̃0.

Definition 5.13. A space X is semilocally simply connected if each point x ∈ X
has a neighborhood U, such that π1(U, x) ⊂ π1(X,x) is trivial.

Theorem 5.14. If a space X is path connected and locally path connected, then
X has a simply connected covering space if and only if X is semilocally simple-
connected.
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Theorem 5.15. If X̃1 → X is a covering space and X̃ → X is a simple-
connected covering space, then X̃ is a covering space of X̃1. Thus, there is a
partial ordering of covering spaces.

The simply-connected covering space X̃ of X is called the universal covering
of X. We will be only interested on Universal covers.

We introduce some basic facts about deck transformations.

Definition 5.16. An (self) isomorphism of covering spaces X̃ → X̃ is called a
deck transformation. These forms a group G(X̃).

Definition 5.17. A covering space p : X̃ → X is normal if for each x ∈ X and
each pair of lifts x̃, x̃′ ∈ p−1(x), there is a deck transformation taking x̃ to x̃′.

Proposition 5.18. Let p : (X̃, x̃0)→ (X,x0) be a path-connected covering space
of a path-connected, locally path-connected space X, and let

H = p∗(π1(X̃, x̃0)) ≤ π1(X,x0).

Then:

1. The group of deck transformations G(X̃) is isomorphic to N(H)/H, where
N(H) is the normalizer subgroup.

2. The covering space is normal if and only if H is a normal subgroup of
π1(X,x0).

Corollary 5.19. If X̃ is a normal covering, then G(X̃) ∼= π1(X,x0)/H. Thus
if X̃ is the universal covering, then G(X̃) ∼= π1(X,x0).

Thus if we have a group Γ acting properly discontinuously on a simply-
connected, locally path-connected space M , a base point x0 ∈M and we have the
quotient map p : M → M/Γ, then by Corollary 5.19 we have that
π1(M/Γ, p(x0)) ∼= Γ.

5.3 Cayley graph and Cayley complex

In the last section we saw that we can realize any group G as a fundamental
group of some space. More precisely, given any group G we are going to con-
struct a simply-connected topological space X, such that G acts free and proper
discontinuously. Then by Corollary 5.19, we have that G is the fundamental
group of X/G.

To construct this space, we proceed as follows: Let G be a finitely generated
and finitely presentable group, let S = {c1, . . . , ck} be the generating set of G.
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Let’s consider A = S ∪ S−1, where S−1 = {c−1
1 , . . . , c−1

k } is the set of formal
inverses of the generating set S (if there is an element a ∈ S such that a2 = 1,
we take a−1 ∈ S−1 as formal inverse). Let

G = 〈A|R1 = · · · = Rp = 1〉

be a presentation of G, where Ri are relations on elements of A and consider
the involution ι : A → A given by ι(cj) = cj for j = 1, . . . , k where cj = c−1

j as
element of G. We call this presentation admissible.

Definition 5.20. Suppose that we have an admissible presentation of the group
G. Then, the Cayley graph of G respect to the presentation is given by C(G) =
(V,E, ι), where:

• The set of vertices is given by V = G.

• Two vertex g, h ∈ G are connected by an edge if g−1h ∈ A. Since G is a
group, then g and h are connected if and only if h = ga for a ∈ A. Thus,
we say that h and ga are connected by a directed edge labelled by a.

• The involution ι : A → A is the involution which takes the edge, which
connects h and g labelled by a, with the edge which connects g and h
labelled by a−1.

Example 5.21. Let F be a free group over the setX. Then, F has a presentation

F = 〈{x}x∈X |∅〉.

In order to have an admissible presentation, we add a generator x−1 for each
x ∈ X and we have

F = 〈{x, x−1}x∈X |xx−1 = x−1x = e〉.

Thus the vertices on C(F ) are labelled by the reduced words over the set of
generators {x, x−1}x∈X , where a reduced word is a word in this letters without
subwords of the form xx−1 for x ∈ X. There is a geometric edge labelled by xx−1

between x1x2 · · ·xkx and x1x2 · · ·xk, where x1, . . . , xk ∈ X. The corresponding
Cayley graph is a tree and, hence, its geometric realisation |C(F )|ι is simply-
connected (see Figure 25):

Let Rj , 1 ≤ j ≤ p be a relation in G, written as Rj = aj1 · · · ajk , where
aji ∈ A. Then any g ∈ G satisfies

gRj = g(aj1 · · · ajk) = g,
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Figure 25: Cayley graph of F2.

thus there is a loop in C(G) starting and ending at g consisting of edges labelled
by aj1 , . . . , ajk precisely in that order. In the geometric realization of C(G)
this loops are homeomorphic to circles and we can glue discs along this circles.
The resulting space is called the Cayley 2-complex of G whit respect the given
presentation and denoted by C2(G).

Example 5.22. Let’s consider the group Z×Z with the admissible presentation:

〈a, b, a−1, b−1|aba−1b−1 = aa−1 = bb−1 = e〉,

then C2(Z× Z) is as shown in the following figure.

Figure 26: Cayley 2-complex of Z× Z.

Observe thatG acts on itself by left action, thusG acts on the set of vertices of
C(G). Extend this action into an action on C(G) in the following way: if k ∈ G,
then we send the edge which connects g and h to the edge which connects kg
and kh. This is well-defined because if g−1h ∈ A, then (kg)−1kh = g−1k−1kh =
g−1h ∈ A. This action induces an action on the geometric realization |C(G)|ι
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and extends to C2(G) by sending a disc attached to the loop corresponding to a
relation Rj , to the disc attached to the loop corresponding to a relation kRj . The
action of G on C(G) (see [3]) is free, transitive and if we have a neighborhood
small enough, we will have at most the number of elements in a cycle satisfying
U ∩ g(U) 6= ∅. Since the cycles are finite, then we have that the action is proper
discontinuous. Thus, we have the following proposition:

Proposition 5.23. If G is a group generated by S, then C2(G) is the universal
covering of XG, where XG is the space with π1(XG) ∼= G constructed by taking
a wedge of circles, one for each generator in S ∪ S−1, and attaching a disc for
each relation.

Proof. Let p : C2(G) → C2(G)/G by the quotient map given by identify the
orbits of the action of G on C2(G). Since C2(G) is arc-connected and locally
arc-connected, since S ∪ S−1 is a generating set of G, then by Corollary 5.19:

G ∼= π1(C2(G)/G)/p∗(π1(C2(G))).

Therefore, if we prove that p∗(π1(C2(G))) is trivial, then we have

G ∼= π1(C2(G)/G).

To do this, we first identify C2(G)/G as XG. Note that every vertex is identified
in C2(G)/G, because every group element is sent to any other group element,
because S ∪ S−1 is a generating set of G. Since every vertex in C(G) has |S|
edges attached to it (one for every element of S), then we see that C2(G)/G is a
wedge of |S| many circles with discs attached to corresponding relations on the
generators. This is exactly XG. Thus,

C2(G)/G ∼= XG.

Therefore, from above we also have:

G ∼= π1(XG)/p∗(π1(C2(G))).

However, XG is constructed, such that π1(XG) ∼= G. It follows from

π1(XG) ∼= G ∼= π1(XG)/p∗(π1(C2(G)))

that p∗(π1(C2(G))) is trivial. Since p : C2(G) → C2(G)/G = XG is a covering,
then p∗ : π1(C2(G))→ π1(XG) is injective. Hence, π1(C2(G)) is trivial by above,
and C2(G) is the universal covering for XG.
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5.4 Classification of surfaces II: Unicity

We apply the last proposition to prove the part of unicity of the Classification
Theorem.

Theorem 5.24. The fundamental group of a surface Sg is given by

π1(Sg) ∼= 〈a1, b1, . . . , ag, bg|Πg
i=1aibia

−1
i b−1

i = e〉.

These groups are non-isomorphic for different choices of g.

Proof. For g = 0, we have that π1(S0) = {e} since S0 is simple-connected. Let’s
assume that g ≥ 1 and we define

Ag := 〈a1, b1, . . . , ag, bg|Πg
i=1aibia

−1
i b−1

i = e〉.

If we attach the inverse of the generators to this presentation and we construct
the associated Cayley graph C(Ag) and the Cayley 2-complex C2(Ag). Then
by the Proposition 5.21, we have that C2(Ag)/Ag is homeomorphic to a wedge
of circles labelled by a1, b1, a

−1
1 , b−1

1 , . . . , ag, bg, a
−1
g , b−1

g , with a disc attached to
them. This description is the same as the surface Sg; therefore, by Proposition
5.21 we have that π1(Sg) = Ag.

6 Combinatorial description of the fundamental group
using ribbon graphs

In this section, we relate the filling ribbon graph of a surface and its fundamental
group. We know that given a surface S exists a filling ribbon graph. This ribbon
graphs are not unique, but we can deform this graphs to a ribbon graph of type
Γg. Using different ribbon graphs, we can compute the fundamental group. This
gives us different presentations of the fundamental group.

Let Γ be a filling ribbon graph. Denote by E, V and F the set of edges,
vertices, and faces respectively.

Definition 6.1 (Combinatorial paths and loops). A discrete path is a finite
sequence (e1, . . . , en) of edges, such that e+

i = e−i+1. The starting point of such
path is e+

1 and the ending point is e+
n . A path is a discrete loop if its starting

point and ending point are the same. We say that a loop has a base point at
v0, if v0 is the starting and ending point. The inverse path of e = (e1, . . . , en) is
ē = (en, . . . , e1).
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Let F (E) be the free group generated by the set of edges; note that every
path defines an element of F (E). Let Lv0Γ be the image of the loops with base
point v0 on F (E), then Lv0Γ is a subgroup of F (E). Let Rv0Γ be the subgroup of
Lv0Γ normally generated by the faces f = (e1, . . . , ek).

Definition 6.2. Let Γ be a filling ribbon graph, then:

• The group Lv0Γ is the group of loops with base point v0.

• The group Rv0Γ is the group of homotopically trivial loops.

• The ribbon fundamental group is π̂1(Γ, v0) = Lv0Γ /R
v0
Γ .

• Two paths e and f with the same starting and final point are homotopics
if the loop ef̄ is an element of Rv0Γ .

Now we relate the fundamental group of a surface S with the ribbon funda-
mental group of its ribbon graph.

Theorem 6.3. Let S be a closed surface and i : |Γ|I → S be an embedding
of the geometric realization of a filling ribbon graph Γ on S. Then, the natural
mapping i∗ : π̂1(Γ, v0) → π1(S, v0), which send every combinatorial loop to its
geometric realization, is an isomorphism of the ribbon fundamental group and
the fundamental group of the surface.

Proof. Since Γ can be deformed to a filling ribbon graph Γg which is a wedge
of circles, we have that Π̂1(Γ, v0) = π̂1(Γg, v0) = Ag, this by Proposition 5.21.
By Theorem 5.22, we have that π1(Sg) = π1(S) = Ag. Therefore, we have the
following:

π̂1(γ, v0) = Ag = π1(S)

and we are done.
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Complex Schottky groups cannot act on P2n
C as a subgroup

of PSL(2n+ 1,C), an alternative proof ∗

Vanessa Alderete †

Abstract

Classical Schottky groups are discrete subgroups of PSL(2,C) acting on the
Riemann sphere by inversions on circles. The complex Schottky groups are a
generalization of Schottky groups, these are discrete subgroups of PSL(n + 1,C)
acting on Pn

C with a dinamical behavior reminiscent to the dynamics of the classical
Schottky groups. They were defined by M.V. Nori [12] in 1986, and studied in
more detail in 2002 [14] by J. Seade and A. Verjovsky.

In 2008, A. Cano [4] proved that in Complex Kleinian groups there is no group
Γ of PSL(2n + 1,C) acting on P2n

C as a complex Schottky group.
Later in 2016 [1], the authors proved that a condition for a group Γ of PU(k, l)

acts as a complex Schottky group on Pn
C , with n + 1 = k + l, that is, l = k. It

means that we have the dynamics of complex Schottky groups for elements in
PU(k, l) only in even dimension.

The objective of this work is to give an alternative proof of Cano’s theorem,
but this time using the tools used in [1] that are more geometric.

Keywords: Complex Schottky groups, complex hyperbolic spaces.

1 Introduction

Kleinian groups are discrete subgroups of PSL(2,C) acting by Möbius transfor-
mations on the Riemann sphere. In those there exist a special type of groups
called Schottky groups; these are costructed by invertions on Jordan’s curves on
the Riemann sphere.

An important aplication of Schottky groups is the Koebe’s Retrosection The-
orem where he proved that any compact manifold M̃ of genus n can be repre-
sented by the quotient Ω/Γ, where Ω is a Γ-invatiant open set in the Riemann
sphere, and Γ is a Schottky group.

In 1986 [12], M.V. Nori gave a generalization of Schottky groups to higher
dimensions. Later in [13, 15, 16], J. Seade and A. Verjovsky gave a generalization
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of Kleinian groups to higher dimensions acting on the projective space and called
them Complex Kleinian groups. Then in [14] J. Seade and A. Verjovsky gave
another constructive generalization to get a Schottky group Γ, as a discrete
subgroup of PSL(n + 1,C) acting on PnC, and they call these kind of groups
complex Schottky groups.

Nowadays the complex Schottky groups still poses interesting open questions,
as we can see in [1] and [10].

In 2008, Á. Cano [4] proved that actually the complex Schottky groups cannot
act on P2n

C as subgroups of PSL(2n + 1,C), given a proof using algebraic and
dinamical tools. In [1], the authors proved that if we take Γ to be a subgroup
of PU(k, l) acting on an Hermitian space as a complex Schottky group, then k
have to be iqual to l.

The objective of this work is to give a proof of the result given by Á. Cano
in [4], but using the geometric tools used in [1]. Formally the theorem is the
following:

Theorem 1.1. Let Γ be a discrete subgroup of PSL(2n + 1,C), then Γ cannot
act as a complex Schottky group on P2n

C .

This paper is organized as follows: in Section 2, we review some general facts
and introduce the notation used along the text, and in Section 3, we give some
useful tools that we will use to prove the main results of this article also given
in this section.

2 Preliminaries

2.1 Projective Geometry

We will work with the complex projective space PnC. To define subspaces of PnC,
we consider the quotient map [ ] : Cn+1\{0} → PnC, then a non-empty set H ⊂ PnC
is said to be a projective subspace of dimension k if there is a C-linear subspace
H̃ of dimension k + 1, such that [H̃ \ {0}] = H. In this article, {e1, . . . , e2n+1}
will denote the standard basis for C2n+1.

Given a set of points S in PnC, we define:

Span(S) =
⋂
{P ⊂ PnC | P is a projective subspace containing S}.

Clearly, Span(S) is a projective subspace of PnC.
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2.2 Projective and Pseudo-projective Transformations

Every linear isomorphism of Cn+1 defines a holomorphic automorphism of PnC.
Also, it is well-known that every holomorphic automorphism of PnC arises in this
way. The group of projective automorphisms of PnC is defined by

PSL(n+ 1,C) := SL(n+ 1,C)/C∗,

where C∗ acts by the usual scalar multiplication. Then, PSL(n+ 1,C) is a Lie
group whose elements are called projective transformations.

We denote by [[ ]] : SL(n+ 1,C)→ PSL(n+ 1,C) the quotient map. Given
γ ∈ PSL(n+ 1,C), we say that γ̃ ∈ SL(n+ 1,C) is a lift of γ if [[γ̃]] = γ.

A way to work with projective transformation is precisely using liftings. One
important tool to work with is the Polar Decomposition, or its equivalent, the
Singular Value Decomposition for elements on SL(2n+1,C); for details see [17].

Considering the notation used in [17], we denote by HPD(n) the group of
positive defined Hermitian matrices and by U(n) the group of unitary matrices,
both in GL(n,C).

Theorem 2.1 (Polar Decomposition). Given a matrix M ∈ GL(n,C), there
exist a unique pair:

(H,Q) ∈ HPD(n)× U(n),

such that M = HQ.
The map M 7→ (H,Q) is called the Polar Decomposition of M and it is an

homeomorphism between GL(n,C) and HPD(n)× U(n).

From the fact that for all positive defined matrices H there exist a positive
defined matrix h, such that h2 = H, we have that starting with the Polar De-
composition of a matrix M, we can obtain the Singular Value Decomposition
given in the next theorem.

Theorem 2.2 (Singular Value Decomposition). Given a matrix M ∈ GL(n,C),
there exist two unitary matrices U, V ∈ U(n) and a diagonal matrix:

D(M) =

 λ1

. . .

λn

 ,

such that M = UD(M)V and where λ1, ..., λn ∈ (0,+∞). The λ′is are called the
singular values of M , they are the square roots of the eigenvalues of
the matrix H given in Theorem 2.1 and they are uniquely defined up to permu-
tation.

Actually we can order the λ′is, such that λ1 ≥ λ2 ≥ . . . ≥ λn > 0.

The last decomposition works even for non-square matrices.
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2.3 Pseudo-projective Transformations

The space of linear transformations from Cn+1 to Cn+1, denoted by M(n+1,C),
is a linear complex space of dimension (n + 1)2. Note that GL(n + 1,C) is an
open dense set of M(n + 1,C). Hence, PSL(n + 1,C) is an open dense set in
QP (n+ 1,C) = (M(n+ 1,C) \ {0})/C∗; the latter is called the space of pseudo-

projective maps. Let M̃ : Cn+1 → Cn+1 be a non-zero linear transformation and
Ker(M̃) be its kernel. We denote by Ker([[M̃ ]]) the respective projectivization.

Then, M̃ induces a well defined map [[M̃ ]] : PnC \Ker([[M̃ ]])→ PnC given by

[[M̃ ]]([v]) = [M̃(v)] .

The following proposition shows that we can find sequences in QP (n + 1,C),
such that the convergence as a sequence of points in a projective space coincides
with the convergence as a sequence of functions on QP (n+ 1,C).

Proposition 2.3 (See [3]). Let (γm) ⊂ PSL(n+ 1,C) be a sequence of distinct
elements, then:

1. There is a subsequence (τm) ⊂ (γm) and τ0 ∈M(n+ 1,C) \ {0}, such that
τm m→∞

// τ0 as points in QP (n+ 1,C).

2. If (τm) is the sequence given by the previous part of this lemma, then
τm m→∞

// τ0 as functions, uniformly on compact sets of PnC \Ker(τ0).

The following lemma will be used at the proof of the main result; for further
details see [2].

Lemma 2.4. Let (γm), (τm) ⊂ PSL(n+1,C) be sequences, such that γm m→∞
// γ0

and τm m→∞
// τ0. If Im(τ) ∩Ker(γ) 6= ∅, then

γmτm m→∞
// γ0τ0.

Now we recall the classification of projective transformations on PSL(n +
1,C). (See [6]):

Definition 2.5. Let γ ∈ PSL(n+ 1,C), then γ is said to be:

1. Loxodromic if γ has a lift γ̃ ∈ SL(n + 1,C), such that γ̃ has at least one
eigenvalue outside the unit circle.

2. Elliptic if γ has a lift γ̃ ∈ SL(n + 1,C), such that γ̃ is diagonalizable and
all of its eigenvalues are in the unit circle.

3. Parabolic if γ has a lift γ̃ ∈ SL(n+ 1,C), such that γ̃ is non-diagonalizable
and all of its eigenvalues are in the unit circle.
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2.4 The Grassmanians and the Plücker embedding

Let 0 ≤ k < n, we define the Grassmanian Gr(k, n) as the space of all k-
dimensional projective subspaces of PnC endowed with the Hausdorff topology.
One has that Gr(k, n) is a compact, connected complex manifold of dimen-
sion k(n − k). A method to realize the Grassmanian Gr(k, n) as a subvariety
of the projective space of the (k + 1)-th exterior power of Cn+1, in symbols
P(
∧k+1 Cn+1), is done by the so called Plücker embedding, which is given by

ι : Gr(k, n)→ P(
∧k+1 Cn+1)

ι(V ) 7→ [v1 ∧ · · · ∧ vk+1],

where Span({v1, · · · , vk+1}) = V . We can induce an action of PSL(n+ 1,C) on
Gr(k, n) and P(

∧k+1 Cn+1) as follows:
Let [[T ]] ∈ PSL(n+1,C), take W = Span({w1, . . . , wk+1}) ∈ Gr(k+1, n+1)

and a point w = [w1 ∧ · · · ∧ wk+1] ∈ P(
∧k+1 Cn+1). Now set

T (W ) = Span([[T ]](w1), . . . , [[T ]](wk+1))

and
k+1∧

T (w) = [T (w1) ∧ · · · ∧ T (wk+1)],

then we have the following commutative diagram:

Gr(k, n)

ι
��

T // Gr(k, n)

ι
��

P(
∧k+1 Cn+1)

∧k+1 T// P(
∧k+1 Cn+1).

(1)

2.5 Complex Schottky groups

Complex Schottky groups are defined as follows; compare with definitions in [7,
8, 9, 12, 13].

Definition 2.6 (See [4]). Let Γ ⊂ PSL(n + 1,C), we say that Γ is a complex
Schottky group acting on PnC with g generators if:

1. There are 2g, for g ≥ 2, open sets R1, . . . , Rg, S1, . . . , Sg satisfying the
following property:

(a) Each of these open sets is the interior of its closure.

(b) The closures of the 2g open sets are pairwise disjoint.



78 Alderete, V.

2. The group has a generating set {γ1, . . . , γg} with the property γj(Rj) =
PnC \ Sj for each j.

An important theorem that caracterizes the complex Schottky groups was
proved by Á. Cano and is the following:

Theorem 2.7 (See [4]). Let Γ ⊂ PSL(n + 1,C) be a complex Schottky group
with g generators, then Γ is a purely loxodromic free group with g generators. If
D =

⋂g
j=1 PnC \ (Rj ∪ Sj), then ΩΓ = ΓD is a Γ-invariant open set where Γ acts

properly discontinuously. Moreover, ΩΓ has compact quotient and the limit set
ΛS(Γ) = PnC \ ΩΓ is disconnected.

The set ΛS(Γ) is called the Schottky limit set of Γ.

3 The alternative prove

3.1 Some auxiliar tools

In this section, we give a series of lemmas and definitions that allow us to un-
derstand the convergence of sequences of distinct elements of PSL(2n + 1,C)
acting on the projective space P2n

C .

Lemma 3.1 ([6]). Let γ ∈ PSL(n,C) be a non-elliptic element. If there is
a sequence (nm) ⊂ Z of distinct elements, such that there is a point p and a
hyperplane H satisfying γnm

m→∞
// p uniformly on compact sets of Pn−1

C \ H,

then p is a fixed point of γ.

Lemma 3.2 ([1]). Let ([[Tm]]) be a sequence of different elements of PSL(k +
l,C), such that there is a point p = [w1 ∧ · · · ∧wk] and a hyperplane H satisfying
[[∧kTm]] m→∞

// p uniformly on compact sets of P(∧k(Ck+l)) \ H. Then for all

U ∈ Gr(k, k+l)\ι−1(H), we have that Tm(U) converges to W = Span(w1, ..., wk)
in Pk+l

C in the Hausdorff topology.

Definition 3.3. Let (γm) be a sequence in a topological space X, we say that
(γm) is a divergent sequence if (γm) leaves every compact set of X.

The following definition tell us when a sequences converge simply to infinity
and it will be useful to prove the lemma ??.

Definition 3.4. Let (γm) ⊂ PSL(2n+ 1,C) be a divergent sequence and con-
sider the Singular Value Decomposition of each γm. We say that (γm) converges
simply to infinity if the following are satisfy:
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1. The compact factors in the Singular Value Decomposition Um and Vm
converge to some U and V in U(2n+ 1).

2. There exist t natural numbers k1, ..., kt ∈ N, such that k1 + · · · + kt =
2n + 1, t sequences (λ1m), ..., (λtm) ⊂ R, and t block matrices D1m ∈
SL(k1,R), ..., Dtm ∈ SL(kt,R), satisfying:

Dm(γm) =

 λ1mD1m
. . .

λtmDtm

 ,

for each m, where the rates λim/λjm →∞ when m→∞, for all i > j, and
the block matrices Dim converge to some Di ∈ SL(ki,R) as m→∞.

Definition 3.5. Let x ∈ P2n
C and (γm), a divergent sequence of different elements

in PSL(2n+ 1,C), we define D(γm)(x) as the set of all the accumulation points
of sequences of the form (γm(xm)), where (xm) is a sequence that converges to
x in P2n

C .

An useful tool has been the λ-lemma, it has been used in distinct contexts
for example: Frances in [7] for the group O(n), J.P. Navarrete [11] for PU(2, 1),
Á. Cano- B. Liu- M. López for the group PU(1, n) [5], and M. Méndez [9] for
the group PU(k, l). In this paper, we give a version for the group SL(2n+ 1,C).

First, let us give an intuitive idea of how the λ-lemma works. Consider an
action of a divergent sequence (γm) of different elements in PSL(2n + 1,C) on
P2n
C and take the Singular Value Decomposition of (γm) for all m, then the λ-

lemma gives us a partition of P2n
C into projective subspaces and with this allows

us to understand the set D(γm)(x).

A virtude of the λ-lemma is that even if we change the context in which we
are working, the proof of it is essentialy the same for all the groups.

Lemma 3.6 (λ-lemma). Let (γm) ⊂ SL(2n+1,C) be a sequence tending simply
to infinity, then there exist:

• t natural numbers k1, ..., kt ∈ N,

• (2t) pairs of projective subespaces P+
1 , ..., P

+
t , P

−
1 , ..., P

−
t ,

• a set of projective transformations γi : P−i → P+
i , and

• a pseudo-projective transformation γ ∈ QP (2n+ 1,C),

such that:
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1. Im(γ) = P+
1 , and Ker(γ) = Span

(
t⋃
i=2

P−i

)
.

2. dim

(
Span

(
t⋃
i=1

P±i

))
= t+

t∑
i=1

dim(P±i ) = 2n+ 1.

3. One of the following holds:

(a) If x ∈ P2n
C \Ker(γ), then (γm)→ γ as m→∞, and

D(γm)(x) = γ(x).

(b) If j ∈ {2, t− 1}, y ∈ P−j and

x ∈ Span

{y},
 t⋃
i=j+1

P−i

 \
 t⋃
i=j+1

P−i


,

then

D(γm)(x) = Span

(
{γj(y)},

(
j−1⋃
i=1

P+
i

))
.

(c) If x ∈ P−t , then

D(γm)(x) = Span

(
{γt(y)},

(
t−1⋃
i=1

P+
i

))
.

Observe that we can also consider the λ-lemma for γ−m, using the fact that
D(γm) is diagonal and invertible.

Here we only give the key parts of the proof and refer to [5], [9] or [1] for
details.

Proof. Let (γm) be a divergent sequence of different elements of PSL(2n+1,C).
By the Singular Value Decomposition, we have that for each m exist Um, Vm ∈
U(2n+ 1), such that:

γm = Um

 λ1mD1m
. . .

λtmDtm

Vm.

Now, following with the notation given in Theorem 2.2, define the projective
subspaces:
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Pj = Span{e∑j−1
1 kj+1

, ..., e∑j
1 kj
},

with 1 ≤ j ≤ t. Then, we define P+
j = [UPj ], and P−j = [V −1Pj ].

Since here we can define the projective transformations γj as a traslations
given by V and U , which are the limits of the sequences Vm and Um. Also we can
define the pseudo-projective transformation γ as the projective transformation,
whose image is just the projective subspace P+

1 .

Now, the first part of the proof follows by the previous. The second part are
straightforward computations about dimension. For the third part, we just have
to observe that the behavior of the dynamics of γm is determined by the values
on the diagonal of D(γm) and see to where it converges.

Now, we are able to prove the main theorem:

Theorem 3.7. Let Γ be a discrete subgroup of PSL(2n + 1,C), then Γ cannot
acts as a complex Schottky group on P2n

C .

Proof. Let us proceed by contradiction. Suppose that Γ ⊂ PSL(2n + 1,C)
acts as a complex Schottky group on P2n

C . Take a generator γ ∈ Γ and let
γ̃ ∈ SL(2n+ 1,C) be a lift of γ. Consider the Singular Value Decomposition of
γ̃m, then we obtain sequences (Um) and (Vm) in U(2n + 1), and (Dm(γm)) in
SL(2n+ 1,C) satisfying γ̃m = Um(Dm(γm))Vm.

Since (Um) and (Vm) lie in a compact set, there is a subsequence (ms) ⊂ (m)
and elements Ū and V̄ in U(2n + 1), such that Ums converges to Ū and Vms

converges to V̄ .

Now, for each m consider the block decomposition of (Dm(γm)) as in Defini-
tion 3.4.2,

Dm(γm) =

 λ1mD1m
. . .

λtmDtm

 ;

in this way, we have that λ1m > ... > λtm > 0.

Clearly, we can assume that (γm) tends simply to infinity.

We claim that there exist projective subspaces P and Q, satisfying the fol-
lowing properties:

1. The spaces P,Q are invariant under the action of γ. Moreover, P is
attracting and Q is repelling.
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2. If Rγ , Sγ are the disjoint open sets associated to γ given in the definition
of a complex Schottky group, then either P ⊂ Rγ and Q ⊂ Sγ , or Q ⊂ Rγ
and P ⊂ Sγ . In particular, it follows that P and Q are also disjoint and
lie in distinct connected components of ΛS(Γ).

3. The dimensions satisfy dimP < n and dimQ < n.

4. If we defined P̂ as the complementary space of Q and Q̂ as the comple-
mentary space of P , we have that P̂ * ΛS(Γ) and Q̂ * ΛS(Γ).

Set P and Q the projectivizations of the spaces P ′ = Û(Span({e1, ..., ek1}))
and Q′ = V̄ −1(Span({e((2n+1)−kt+1), ..., e2n+1})).

Let us show the first part (1), consider the action of ∧k1D(γm) on ∧k1C2n+1,
then a straightforward calculation shows that the matrix of ∧k1D(γm) with re-
spect the standard ordered basis β of ∧k1C2n+1 is given by

Am =


θ1

θ2

. . .

θ(k
n)

 ,

where θi is the product of ki elements taken from the set {eλi,m(γnm )} and or-
dered in the lexicographical order in (i,m). In fact, θ1 > θ2 > ... > θ( k1

2n+1)
.

Hence, [[D(γm)]] converges to x = [e1 ∧ · · · ∧ ek1 ] uniformly on compact sets of
P(∧k1(C2n+1)) \ Span(β \ {x}).

Therefore, by Lemma 2.4, we conclude that [[∧k1 γ̃m]] converges to the point
[[∧kU ]][e1∧· · ·∧ek1 ] uniformly on compact sets of P(∧k1(C2n+1))\[∧k1V −1]Span(β\
{x}). Finally, from Lemma 3.1, we conclude that x is a fixed point of [[∧k1 γ̃ms ]],
in consequence, P = [C]Span({[e1], . . . , [ek1 ]}) is attracting and invariant under
γ. In a similar way, we can prove that Q is repelling and invariant.

Part (2). On the contrary, suppose there exist x ∈ P ∩ (P2n
C \ (Rγ ∪Sγ)) 6= ∅.

Because of (1), we have that x is an atracting point, then for some z ∈ P2n
C \

(Rγ ∪Sγ), we have that γm(z) converges to x as m tends to ∞, but in the other
hand by the dynamics of Γ as a complex Schottky group, we have that γ(z) ∈ Sγ
and also γm(z) ∈ Sγ , then x ∈ Sγ , which is a contradiction.

Part (3). Suppose that dimP = n and take γ1, γ2 ∈ Γ generators of Γ and let
Ri and Si be the open set associated to γi with i = 1, 2, and suppose that P ⊂ R2.
Observe that P ′ = γ−1

2 γ1(P ) ⊂ S2, dimP = dimP ′ = n, and P ∩ P ′ = ∅, then
P ⊕ P ′ = P2n

C . Now if we take the liftings of P and P ′, we have that P + P ′ is
a subspace of C2n+1, but dim(P + P ′) = 2n+ 2, which is a contradiction. Then
the dimension of P have to be less than n, this is also true for Q.
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Part (4). Assume that P̂ ⊂ ΛS(Γ). By the previous part, we can assume
that P ⊂ Sγ . Let γ1 ∈ Γ be a generator of Γ distinct from γ. By Lemma 3.2 we
conclude that γ−m(γ1(P )) converges to Q; therefore, γ−m1 (γ(P̂ )) converges to Q̂.
Hence, Q̂ ⊂ ΛS(Γ). Then we have that P ⊂ P̂ , Q ⊂ Q̂, and P̂ ∩ Q̂ 6= ∅, and all
of these spaces are path connected, which lead us to a contradiction of (2).

Now, take the block Dj , such that the vector en+1 ∈ Dj , and call L the space
generated by the eigenvectors associated to the eigenvalue in Dj . Observe that
L ⊂ P̂ ∩ Q̂, then by (4) L * ΛS(Γ); it means that L ∈ ΩΓ.

Now consider the space of lines between P and the spaces generated by
the eigenvectors associated to the blocks D2, ..., Dj−1 and call it A; also con-
sider the space of lines between Q and the spaces generated by the eigenvectors
asociated to the blocks Dj+1, ..., Dt and call it B. Notice that A and B are
connected.

To conclude the proof, by the λ-lemma, we have that if we take p, q ∈ L ⊂ ΩΓ

and a ∈ Span ({p}, A) \A, and b ∈ Span ({q}, B) \B, we have that Span(p̂, P )∪
Span(q̂, Q) ⊂ ΛΓ, for some p̂, q̂ ∈ L. But Span(p̂, P ), Span(q̂, Q), and L are path
connected. Then we can construct a path in ΛΓ, passing along p̂ and q̂ through
L and connecting P with Q, which contradict (2) and that concludes the proof
of the theorem.
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